↓ Skip to main content

Examining Subcortical Infarcts in the Era of Acute Multimodality CT Imaging

Overview of attention for article published in Frontiers in Neurology, December 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Examining Subcortical Infarcts in the Era of Acute Multimodality CT Imaging
Published in
Frontiers in Neurology, December 2016
DOI 10.3389/fneur.2016.00220
Pubmed ID
Authors

Mindy Y. Q. Tan, Shaloo Singhal, Henry Ma, Ronil V. Chandra, Jamie Cheong, Benjamin B. Clissold, John Ly, Velandai Srikanth, Thanh G. Phan

Abstract

Lacunar infarct has been characterized as small subcortical infarct. It is postulated to occur from "in situ microatheroma or lipohyalinosis" in small vessel or lacunar mechanism. Based on this idea, such infarcts by lacunar mechanism should not be associated with large area of perfusion deficits that extend beyond the subcortical region to the cortical region. By contrast, selected small subcortical infarcts, as defined by MR imaging in the subacute and chronic stage, may initially have large perfusion deficit or related large vessel occlusions. These infarcts with "lacunar" phenotype may also be caused by disease in the parent vessel and may have very different stroke mechanism from small vessel disease. Our aim is to describe differences in imaging characteristics between patients with small subcortical infarction with "lacunar phenotype" from those with lacunar mechanism. Patients undergoing acute CT perfusion/angiography (CTP/CTA) within 6 h of symptom onset and follow-up magnetic resonance imaging (MRI) for ischemic stroke were included (2009-2013). Lacunar infarct was defined as a single subcortical infarct ≤20 mm on follow-up MRI. Presence of perfusion deficits, vessel occlusion, and infarct dimensions was compared between lacunar infarcts and other topographical infarct types. Overall, 182 patients (mean age 66.4 ± 15.3 years, 66% males) were included. Lacunar infarct occurred in 31 (17%) patients. Of these, 12 (39%) patients had a perfusion deficit compared with those with any cortical infarction (120/142, 67%), and the smallest lacunar infarct with a perfusion deficit had a diameter of <5 mm. The majority of patients with lacunar infarction (8/12, 66.7%) had a relevant vessel occlusion. A quarter of lacunar infarcts had a large artery stroke mechanism evident on acute CTP/CTA. Lacunar mechanism was present in 3/8 patients with corona radiata, 5/10 lentiform nucleus, 5/6 posterior limb of internal capsule (PLIC), 3/5 thalamic infarcts, 1/2 miscellaneous locations. There was a trend to significant with regards to finding lacunar mechanism among patients with thalamic and PLIC infarcts versus lentiform nucleus and corona radiata infarcts (p = 0.13). Diverse stroke mechanisms were present among subcortical infarcts in different locations. When available acute CTP/CTA should be combined with subacute imaging of subcortical infarct to separate "lacunar phenotype" from those with lacunar mechanism.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 26%
Student > Master 3 16%
Student > Ph. D. Student 2 11%
Other 2 11%
Student > Doctoral Student 1 5%
Other 1 5%
Unknown 5 26%
Readers by discipline Count As %
Medicine and Dentistry 5 26%
Neuroscience 3 16%
Agricultural and Biological Sciences 1 5%
Arts and Humanities 1 5%
Earth and Planetary Sciences 1 5%
Other 1 5%
Unknown 7 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 December 2016.
All research outputs
#18,958,378
of 23,493,900 outputs
Outputs from Frontiers in Neurology
#8,101
of 12,418 outputs
Outputs of similar age
#308,267
of 419,177 outputs
Outputs of similar age from Frontiers in Neurology
#41
of 74 outputs
Altmetric has tracked 23,493,900 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,418 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.4. This one is in the 25th percentile – i.e., 25% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 419,177 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 74 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.