↓ Skip to main content

Developmental Changes in Pain and Spinal Immune Gene Expression after Radicular Trauma in the Rat

Overview of attention for article published in Frontiers in Neurology, December 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Developmental Changes in Pain and Spinal Immune Gene Expression after Radicular Trauma in the Rat
Published in
Frontiers in Neurology, December 2016
DOI 10.3389/fneur.2016.00223
Pubmed ID
Authors

Gordon A. Barr, Shaoning Wang, Christine L. Weisshaar, Beth A. Winkelstein

Abstract

Neuropathic pain is chronic pain that develops after nerve injury and is less frequent in infants and children than in adults. Likewise, in animal models of neuropathic pain, allodynia and hyperalgesia are non-existent or attenuated in the infant, with a "switch" during development by which acute nerve injury transitions to chronic pain. Concomitant with the delay in neuropathic pain, there is a parallel delay in the ability of nerve injury to activate the immune system. Models of neuropathic pain in the infant have used various ligation methods and find that neuropathic pain does not occur under after postnatal days 21-28 (PN21-PN28), linked to activation of immune processes and developmental regulation of anti-inflammatory cytokines. We applied a model of neuropathic pain in the adult using a transient compression of the cervical nerve or nerve root in infant rats (injured at 10, 14, 21, or 28 days of age) to define transition periods during which injury results in no change in thermal and mechanical pain sensitivity or in short-term changes in pain. There was little to no hyperalgesia when the injury was imposed at PN10, but significant thermal hyperalgesia and mechanical allodynia 1 day after compression injury when performed at PN14, 21, or 28. Thermal withdrawal latencies returned to near baseline by 7 days postsurgery when the injuries were at PN14, and lasted up to 14 days when the injury was imposed at PN28. There was mechanical allodynia following injury at 1 day postinjury and at 14 days after injury at PN14. Measurements of mRNA from spinal cord at 1, 7, and 14 days postinjury at PN14, 21, and 28 showed that both the magnitude and duration of elevated immune markers and chemokines/cytokines were greater in the older animals, corresponding to the development of hyperalgesia. Thus, we confirm the late onset of neuropathic pain but found no evidence of emergent hyperalgesia if the injury was before PN21. This may be due to the use of a transient, and not sustained, compression ligation model.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Other 4 16%
Student > Doctoral Student 3 12%
Student > Bachelor 2 8%
Student > Master 2 8%
Lecturer 1 4%
Other 4 16%
Unknown 9 36%
Readers by discipline Count As %
Medicine and Dentistry 5 20%
Agricultural and Biological Sciences 2 8%
Engineering 2 8%
Neuroscience 2 8%
Social Sciences 1 4%
Other 2 8%
Unknown 11 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 December 2016.
All research outputs
#17,832,285
of 22,908,162 outputs
Outputs from Frontiers in Neurology
#7,105
of 11,826 outputs
Outputs of similar age
#292,643
of 420,876 outputs
Outputs of similar age from Frontiers in Neurology
#36
of 71 outputs
Altmetric has tracked 22,908,162 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,826 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,876 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 71 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.