↓ Skip to main content

Effect of Noisy Galvanic Vestibular Stimulation on Ocular Vestibular-Evoked Myogenic Potentials to Bone-Conducted Vibration

Overview of attention for article published in Frontiers in Neurology, February 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effect of Noisy Galvanic Vestibular Stimulation on Ocular Vestibular-Evoked Myogenic Potentials to Bone-Conducted Vibration
Published in
Frontiers in Neurology, February 2017
DOI 10.3389/fneur.2017.00026
Pubmed ID
Authors

Shinichi Iwasaki, Shotaro Karino, Teru Kamogashira, Fumiharu Togo, Chisato Fujimoto, Yoshiharu Yamamoto, Tatsuya Yamasoba

Abstract

Galvanic vestibular stimulation (GVS) delivered as zero-mean current noise (noisy GVS) has been shown to improve static and dynamic postural stability probably by enhancing vestibular information. The purpose of this study was to examine the effect of an imperceptible level noisy GVS on ocular vestibular-evoked myogenic potentials (oVEMPs) in response to bone-conducted vibration (BCV). oVEMPs to BCV were measured during the application of white noise GVS with an amplitude ranging from 0 to 300 µA [in root mean square (RMS)] in 20 healthy subjects. Artifacts in the oVEMPs caused by GVS were reduced by inverting the waveforms of noisy GVS in the later half of the stimulus from the one in the early half. We examined the amplitudes of N1 and N1-P1 and their latencies. Noisy GVS significantly increased the N1 and N1-P1 amplitudes (p < 0.05) whereas it had no significant effects on N1 or P1 latencies (p > 0.05). Noisy GVS had facilitatory effects in 79% of ears. The amplitude of the optimal stimulus was 127 ± 14 µA, and it increased the N1 and N1-P1 amplitude by 75.9 ± 15% and 47.7 ± 9.1%, respectively, as compared with 0 µA session (p < 0.05). Noisy GVS can increase the amplitude of oVEMPs to BCV in healthy subjects probably via stochastic resonance. The results of the present study suggest that noisy GVS may improve static and dynamic postural stability by enhancing the function of the vestibular afferents.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 22%
Student > Bachelor 4 13%
Student > Master 4 13%
Researcher 4 13%
Student > Doctoral Student 2 6%
Other 5 16%
Unknown 6 19%
Readers by discipline Count As %
Medicine and Dentistry 6 19%
Nursing and Health Professions 3 9%
Neuroscience 3 9%
Psychology 2 6%
Computer Science 1 3%
Other 6 19%
Unknown 11 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 November 2017.
All research outputs
#13,300,289
of 22,950,943 outputs
Outputs from Frontiers in Neurology
#5,060
of 11,843 outputs
Outputs of similar age
#206,408
of 420,783 outputs
Outputs of similar age from Frontiers in Neurology
#44
of 114 outputs
Altmetric has tracked 22,950,943 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,843 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,783 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 114 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.