↓ Skip to main content

Vestibular Activation Habituates the Vasovagal Response in the Rat

Overview of attention for article published in Frontiers in Neurology, March 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Vestibular Activation Habituates the Vasovagal Response in the Rat
Published in
Frontiers in Neurology, March 2017
DOI 10.3389/fneur.2017.00083
Pubmed ID
Authors

Bernard Cohen, Giorgio P. Martinelli, Yongqing Xiang, Theodore Raphan, Sergei B. Yakushin

Abstract

Vasovagal syncope is a significant medical problem without effective therapy, postulated to be related to a collapse of baroreflex function. While some studies have shown that repeated static tilts can block vasovagal syncope, this was not found in other studies. Using anesthetized, male Long-Evans rats that were highly susceptible to generation of vasovagal responses, we found that repeated activation of the vestibulosympathetic reflex (VSR) with ±2 and ±3 mA, 0.025 Hz sinusoidal galvanic vestibular stimulation (sGVS) caused incremental changes in blood pressure (BP) and heart rate (HR) that blocked further generation of vasovagal responses. Initially, BP and HR fell ≈20-50 mmHg and ≈20-50 beats/min (bpm) into a vasovagal response when stimulated with Sgv\S in susceptible rats. As the rats were continually stimulated, HR initially rose to counteract the fall in BP; then the increase in HR became more substantial and long lasting, effectively opposing the fall in BP. Finally, the vestibular stimuli simply caused an increase in BP, the normal sequence following activation of the VSR. Concurrently, habituation caused disappearance of the low-frequency (0.025 and 0.05 Hz) oscillations in BP and HR that must be present when vasovagal responses are induced. Habituation also produced significant increases in baroreflex sensitivity (p < 0.001). Thus, repeated low-frequency activation of the VSR resulted in a reduction and loss of susceptibility to development of vasovagal responses in rats that were previously highly susceptible. We posit that reactivation of the baroreflex, which is depressed by anesthesia and the disappearance of low-frequency oscillations in BP and HR are likely to be critically involved in producing resistance to the development of vasovagal responses. SGVS has been widely used to activate muscle sympathetic nerve activity in humans and is safe and well tolerated. Potentially, it could be used to produce similar habituation of vasovagal syncope in humans.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 27%
Student > Doctoral Student 2 18%
Unspecified 1 9%
Student > Bachelor 1 9%
Lecturer 1 9%
Other 2 18%
Unknown 1 9%
Readers by discipline Count As %
Engineering 3 27%
Neuroscience 2 18%
Unspecified 1 9%
Psychology 1 9%
Nursing and Health Professions 1 9%
Other 2 18%
Unknown 1 9%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 March 2017.
All research outputs
#20,410,007
of 22,959,818 outputs
Outputs from Frontiers in Neurology
#8,864
of 11,842 outputs
Outputs of similar age
#268,726
of 308,059 outputs
Outputs of similar age from Frontiers in Neurology
#117
of 148 outputs
Altmetric has tracked 22,959,818 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,842 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,059 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 148 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.