↓ Skip to main content

Altered Insular and Occipital Responses to Simulated Vertical Self-Motion in Patients with Persistent Postural-Perceptual Dizziness

Overview of attention for article published in Frontiers in Neurology, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
4 X users

Readers on

mendeley
98 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Altered Insular and Occipital Responses to Simulated Vertical Self-Motion in Patients with Persistent Postural-Perceptual Dizziness
Published in
Frontiers in Neurology, October 2017
DOI 10.3389/fneur.2017.00529
Pubmed ID
Authors

Roberta Riccelli, Luca Passamonti, Nicola Toschi, Salvatore Nigro, Giuseppe Chiarella, Claudio Petrolo, Francesco Lacquaniti, Jeffrey P. Staab, Iole Indovina

Abstract

Persistent postural-perceptual dizziness (PPPD) is a common functional vestibular disorder characterized by persistent symptoms of non-vertiginous dizziness and unsteadiness that are exacerbated by upright posture, self-motion, and exposure to complex or moving visual stimuli. Recent physiologic and neuroimaging data suggest that greater reliance on visual cues for postural control (as opposed to vestibular cues-a phenomenon termed visual dependence) and dysfunction in central visuo-vestibular networks may be important pathophysiologic mechanisms underlying PPPD. Dysfunctions are thought to involve insular regions that encode recognition of the visual effects of motion in the gravitational field. We tested for altered activity in vestibular and visual cortices during self-motion simulation obtained via a visual virtual-reality rollercoaster stimulation using functional magnetic resonance imaging in 15 patients with PPPD and 15 healthy controls (HCs). We compared between groups differences in brain responses to simulated displacements in vertical vs horizontal directions and correlated the difference in directional responses with dizziness handicap in patients with PPPD. HCs showed increased activity in the anterior bank of the central insular sulcus during vertical relative to horizontal motion, which was not seen in patients with PPPD. However, for the same comparison, dizziness handicap correlated positively with activity in the visual cortex (V1, V2, and V3) in patients with PPPD. We provide novel insight into the pathophysiologic mechanisms underlying PPPD, including functional alterations in brain processes that affect balance control and reweighting of space-motion inputs to favor visual cues. For patients with PPPD, difficulties using visual data to discern the effects of gravity on self-motion may adversely affect balance control, particularly for individuals who simultaneously rely too heavily on visual stimuli. In addition, increased activity in the visual cortex, which correlated with severity of dizziness handicap, may be a neural correlate of visual dependence.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 98 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 98 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 14%
Researcher 14 14%
Student > Master 9 9%
Student > Bachelor 9 9%
Librarian 4 4%
Other 18 18%
Unknown 30 31%
Readers by discipline Count As %
Medicine and Dentistry 23 23%
Neuroscience 8 8%
Nursing and Health Professions 8 8%
Engineering 5 5%
Psychology 5 5%
Other 11 11%
Unknown 38 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 December 2020.
All research outputs
#14,541,801
of 23,726,221 outputs
Outputs from Frontiers in Neurology
#5,720
of 12,635 outputs
Outputs of similar age
#177,072
of 327,930 outputs
Outputs of similar age from Frontiers in Neurology
#84
of 188 outputs
Altmetric has tracked 23,726,221 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,635 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.5. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,930 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 188 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.