↓ Skip to main content

Altered Regional Brain Cortical Thickness in Pediatric Obstructive Sleep Apnea

Overview of attention for article published in Frontiers in Neurology, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
4 Facebook pages

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
70 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Altered Regional Brain Cortical Thickness in Pediatric Obstructive Sleep Apnea
Published in
Frontiers in Neurology, January 2018
DOI 10.3389/fneur.2018.00004
Pubmed ID
Authors

Paul M. Macey, Leila Kheirandish-Gozal, Janani P. Prasad, Richard A., Rajesh Kumar, Mona F. Philby, David Gozal

Abstract

Obstructive sleep apnea (OSA) affects 2-5% of all children and is associated with cognitive and behavioral deficits, resulting in poor school performance. These psychological deficits may arise from brain injury, as seen in preliminary findings of lower gray matter volume among pediatric OSA patients. However, the psychological deficits in OSA are closely related to functions in the cortex, and such brain areas have not been specifically assessed. The objective was to determine whether cortical thickness, a marker of possible brain injury, is altered in children with OSA. We examined regional brain cortical thicknesses using high-resolution T1-weighted magnetic resonance images in 16 pediatric OSA patients (8 males; mean age ± SD = 8.4 ± 1.2 years; mean apnea/hypopnea index ± SD = 11 ± 6 events/h) and 138 controls (8.3 ± 1.1 years; 62 male; 138 subjects from the NIH Pediatric MRI database) to identify cortical thickness differences in pediatric OSA subjects. Cortical thinning occurred in multiple regions including the superior frontal, ventral medial prefrontal, and superior parietal cortices. The left side showed greater thinning in the superior frontal cortex. Cortical thickening was observed in bilateral precentral gyrus, mid-to-posterior insular cortices, and left central gyrus, as well as right anterior insula cortex. Changes in cortical thickness are present in children with OSA and likely indicate disruption to neural developmental processes, including maturational patterns of cortical volume increases and synaptic pruning. Regions with thicker cortices may reflect inflammation or astrocyte activation. Both the thinning and thickening associated with OSA in children may contribute to the cognitive and behavioral dysfunction frequently found in the condition.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 70 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 10%
Researcher 6 9%
Student > Doctoral Student 6 9%
Student > Bachelor 6 9%
Student > Postgraduate 5 7%
Other 10 14%
Unknown 30 43%
Readers by discipline Count As %
Medicine and Dentistry 17 24%
Psychology 5 7%
Neuroscience 3 4%
Agricultural and Biological Sciences 2 3%
Nursing and Health Professions 2 3%
Other 8 11%
Unknown 33 47%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 December 2020.
All research outputs
#14,965,143
of 23,018,998 outputs
Outputs from Frontiers in Neurology
#6,173
of 11,914 outputs
Outputs of similar age
#256,080
of 441,076 outputs
Outputs of similar age from Frontiers in Neurology
#106
of 225 outputs
Altmetric has tracked 23,018,998 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,914 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 441,076 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 225 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.