↓ Skip to main content

Executive Functions May Predict Outcome in Deep Brain Stimulation of Anterior Nucleus of Thalamus for Treatment of Refractory Epilepsy

Overview of attention for article published in Frontiers in Neurology, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
60 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Executive Functions May Predict Outcome in Deep Brain Stimulation of Anterior Nucleus of Thalamus for Treatment of Refractory Epilepsy
Published in
Frontiers in Neurology, May 2018
DOI 10.3389/fneur.2018.00324
Pubmed ID
Authors

Soila Järvenpää, Eija Rosti-Otajärvi, Sirpa Rainesalo, Linda Laukkanen, Kai Lehtimäki, Jukka Peltola

Abstract

Deep brain stimulation (DBS) of the anterior nucleus of thalamus (ANT) is an emerging treatment option for patients suffering from refractory epilepsy. ANT has extensive connections with hippocampus and retrosplenial cingulum, areas associated mainly with spatial memory and with anterior cingulum which is important in executive functions. As refractory epilepsy is often associated with cognitive decline and neuronal damage, the decreased connectivity between ANT and remote structures might impact on the effects of DBS. We hypothesized that the neuropsychological profile could reflect the connectivity of ANT and further predict the efficacy of ANT DBS. We evaluated the cognitive performance of patients with refractory epilepsy with DBS to evaluate whether neuropsychological profiles could reflect the connectivity of ANT and further predict the efficacy of ANT DBS. Sixteen patients with refractory epilepsy treated with ANT DBS with at least 2 years of follow-up were included in the study. Patients underwent a neuropsychological evaluation as a part of the protocol and their clinical outcome was determined by seizure frequency in the last 6 months compared to baseline. The patients were classified as responders if there was a ≥50% reduction in the frequency of the predominant seizure type, otherwise as nonresponders. There were 12 responders and 4 nonresponders for ANT DBS treatment in the study population. Nonresponders performed worse than responders in neuropsychological tasks measuring executive functions and attention, such as the Trail-Making Test. Better executive functions and attention seemed to predict improved clinical outcome after the ANT DBS surgery. Based on our preliminary descriptive findings and the anatomical connectivity hypothesis, we suggest that deficits in executive functions may relate to an inferior outcome. This finding might offer new tools for refining the selection of patients with refractory epilepsy scheduled to undergo ANT DBS surgery. Moreover, it highlights the need for further investigations of neural connectivity in epilepsy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 60 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 13%
Student > Ph. D. Student 7 12%
Student > Bachelor 7 12%
Student > Postgraduate 7 12%
Student > Master 7 12%
Other 9 15%
Unknown 15 25%
Readers by discipline Count As %
Neuroscience 16 27%
Medicine and Dentistry 14 23%
Psychology 6 10%
Engineering 5 8%
Social Sciences 1 2%
Other 2 3%
Unknown 16 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 May 2018.
All research outputs
#15,458,055
of 23,047,237 outputs
Outputs from Frontiers in Neurology
#6,718
of 11,952 outputs
Outputs of similar age
#207,951
of 327,709 outputs
Outputs of similar age from Frontiers in Neurology
#173
of 287 outputs
Altmetric has tracked 23,047,237 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,952 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,709 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 287 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.