↓ Skip to main content

Modeling the Triggering of Saccades, Microsaccades, and Saccadic Intrusions

Overview of attention for article published in Frontiers in Neurology, May 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Modeling the Triggering of Saccades, Microsaccades, and Saccadic Intrusions
Published in
Frontiers in Neurology, May 2018
DOI 10.3389/fneur.2018.00346
Pubmed ID
Authors

Jorge Otero-Millan, Lance M. Optican, Stephen L. Macknik, Susana Martinez-Conde

Abstract

When we explore a static visual scene, our eyes move in a sequence of fast eye movements called saccades, which are separated by fixation periods of relative eye stability. Based on uncertain sensory and cognitive inputs, the oculomotor system must decide, at every moment, whether to initiate a saccade or to remain in the fixation state. Even when we attempt to maintain our gaze on a small spot, small saccades, called microsaccades, intrude on fixation once or twice per second. Because microsaccades occur at the boundary of the decision to maintain fixation versus starting a saccade, they offer a unique opportunity to study the mechanisms that control saccadic triggering. Abnormal saccadic intrusions can occur during attempted fixation in patients with neurodegenerative disorders. We have implemented a model of the triggering mechanism of saccades, based on known anatomy and physiology, that successfully simulates the generation of saccades of any size-including microsaccades in healthy observers, and the saccadic intrusions that interrupt attempted fixation in parkinsonian patients. The model suggests that noisy neuronal activity in the superior colliculus controls the state of a mutually inhibitory network in the brain stem formed by burst neurons and omnipause neurons. When the neuronal activity is centered at the rostral pole, the system remains at a state of fixation. When activity is perturbed away from this center, a saccade is triggered. This perturbation can be produced either by the intent to move one's gaze or by random fluctuations in activity.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 28%
Student > Ph. D. Student 7 18%
Student > Master 5 13%
Student > Doctoral Student 4 10%
Student > Bachelor 3 8%
Other 6 15%
Unknown 4 10%
Readers by discipline Count As %
Neuroscience 11 28%
Psychology 9 23%
Computer Science 4 10%
Medicine and Dentistry 4 10%
Agricultural and Biological Sciences 2 5%
Other 6 15%
Unknown 4 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 May 2018.
All research outputs
#20,514,440
of 23,081,466 outputs
Outputs from Frontiers in Neurology
#8,997
of 11,986 outputs
Outputs of similar age
#290,310
of 330,889 outputs
Outputs of similar age from Frontiers in Neurology
#238
of 308 outputs
Altmetric has tracked 23,081,466 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,986 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,889 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 308 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.