↓ Skip to main content

Multimodality Image Post-processing in Detection of Extratemporal MRI-Negative Cortical Dysplasia

Overview of attention for article published in Frontiers in Neurology, June 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Multimodality Image Post-processing in Detection of Extratemporal MRI-Negative Cortical Dysplasia
Published in
Frontiers in Neurology, June 2018
DOI 10.3389/fneur.2018.00450
Pubmed ID
Authors

Wen-han Hu, Xiu Wang, Li-na Liu, Xiao-qiu Shao, Kai Zhang, Yan-shan Ma, Lin Ai, Jun-ju Li, Jian-guo Zhang

Abstract

Purpose: To determine the diagnostic value of individual image post-processing techniques in a series of patients who underwent extratemporal operations for histologically proven, MRI-negative focal cortical dysplasia (FCD). Methods: The morphometric analysis program (MAP), PET/MRI co-registration and statistical parametric mapping (SPM) analysis of PET (SPM-PET) techniques were analyzed in 33 consecutive patients. The epileptogenic zone (EZ) assumed by MAP, PET/MRI, and SPM-PET was compared with the location of the FCD lesions determined by stereoelectroencephalography (SEEG) and histopathological study. The detection rate of each modality was statistically compared. Results: Three lesions were simultaneously detected by the three post-processing methods, while two lesions were only MAP positive, and 8 were only PET/MRI positive. The detection rate of MAP, PET/MRI, SPM-PET and the combination of the three modalities was 24.2, 90.9, 57.6, and 97.0%, respectively. Taking the pathological subtype into account, no type I lesions were detected by MAP, and PET/MRI was the most sensitive method for detecting FCD types II and IIA. During a mean follow-up period of 22.94 months, seizure freedom was attained in 26/33 patients (78.8%) after focal corticectomy. Conclusions: MAP, PET/MRI, and SPM-PET provide complementary information for FCD detection, intracranial electrode design, and lesion resection. PET/MRI was particularly useful, with the highest detection rate of extratemporal MRI-negative FCD.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Postgraduate 6 15%
Student > Doctoral Student 5 13%
Researcher 5 13%
Other 4 10%
Student > Master 3 8%
Other 3 8%
Unknown 13 33%
Readers by discipline Count As %
Medicine and Dentistry 12 31%
Neuroscience 7 18%
Physics and Astronomy 2 5%
Social Sciences 1 3%
Biochemistry, Genetics and Molecular Biology 1 3%
Other 2 5%
Unknown 14 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 June 2018.
All research outputs
#20,522,137
of 23,090,520 outputs
Outputs from Frontiers in Neurology
#9,014
of 12,001 outputs
Outputs of similar age
#288,112
of 328,563 outputs
Outputs of similar age from Frontiers in Neurology
#247
of 318 outputs
Altmetric has tracked 23,090,520 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,001 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,563 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 318 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.