↓ Skip to main content

Functional and Structural Brain Damage in Friedreich's Ataxia

Overview of attention for article published in Frontiers in Neurology, September 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Functional and Structural Brain Damage in Friedreich's Ataxia
Published in
Frontiers in Neurology, September 2018
DOI 10.3389/fneur.2018.00747
Pubmed ID
Authors

Marinela Vavla, Filippo Arrigoni, Andrea Nordio, Alberto De Luca, Silvia Pizzighello, Elisa Petacchi, Gabriella Paparella, Maria Grazia D'Angelo, Erika Brighina, Emanuela Russo, Marianna Fantin, Paola Colombo, Andrea Martinuzzi

Abstract

Friedreich's ataxia (FRDA) is a rare hereditary neurodegenerative disorder caused by a GAA repeat expansion in the FXN gene. There is still no cure or quantitative biomarkers reliaby correlating with the progression rate and disease severity. Investigation of functional and structural alterations characterizing white (WM) and gray matter (GM) in FRDA are needed prerequisite to monitor progression and response to treatment. Here we report the results of a multimodal cross-sectional MRI study of FRDA including Voxel-Based Morphometry (VBM), diffusion-tensor imaging (DTI), functional MRI (fMRI), and a correlation analysis with clinical severity scores. Twenty-one early-onset FRDA patients and 18 age-matched healthy controls (HCs) were imaged at 3T. All patients underwent a complete cognitive and clinical assessment with ataxia scales. VBM analysis showed GM volume reduction in FRDA compared to HCs bilaterally in lobules V, VI, VIII (L>R), as well as in the crus of cerebellum, posterior lobe of the vermis, in the flocculi and in the left tonsil. Voxel-wise DTI analysis showed a diffuse fractional anisotropy reduction and mean, radial, axial (AD) diffusivity increase in both infratentorial and supratentorial WM. ROI-based analysis confirmed the results showing differences of the same DTI metrics in cortico-spinal-tracts, forceps major, corpus callosum, posterior thalamic radiations, cerebellar penduncles. Additionally, we observed increased AD in superior (SCP) and middle cerebellar peduncles. The WM findings correlated with age at onset (AAO), short-allelle GAA, and disease severity. The intragroup analysis of fMRI data from right-handed 14 FRDA and 15 HCs showed similar findings in both groups, including activation in M1, insula and superior cerebellar hemisphere (lobules V-VIII). Significant differences emerged only during the non-dominant hand movement, with HCs showing a stronger activation in the left superior cerebellar hemisphere compared to FRDA. Significant correlations were found between AAO and the fMRI activation in cerebellar anterior and posterior lobes, insula and temporal lobe. Our multimodal neuroimaging protocol suggests that MRI is a useful tool to document the extension of the neurological impairment in FRDA.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 20%
Student > Master 7 14%
Researcher 7 14%
Student > Bachelor 4 8%
Professor > Associate Professor 3 6%
Other 6 12%
Unknown 14 27%
Readers by discipline Count As %
Neuroscience 7 14%
Medicine and Dentistry 6 12%
Biochemistry, Genetics and Molecular Biology 6 12%
Agricultural and Biological Sciences 3 6%
Pharmacology, Toxicology and Pharmaceutical Science 3 6%
Other 8 16%
Unknown 18 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 September 2018.
All research outputs
#18,648,325
of 23,102,082 outputs
Outputs from Frontiers in Neurology
#7,917
of 12,015 outputs
Outputs of similar age
#258,106
of 336,142 outputs
Outputs of similar age from Frontiers in Neurology
#190
of 295 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,015 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,142 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 295 others from the same source and published within six weeks on either side of this one. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.