↓ Skip to main content

Neuroimaging, a new tool for investigating the effects of early diet on cognitive and brain development

Overview of attention for article published in Frontiers in Human Neuroscience, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
88 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Neuroimaging, a new tool for investigating the effects of early diet on cognitive and brain development
Published in
Frontiers in Human Neuroscience, January 2013
DOI 10.3389/fnhum.2013.00445
Pubmed ID
Authors

Elizabeth B. Isaacs

Abstract

Nutrition is crucial to the initial development of the central nervous system (CNS), and then to its maintenance, because both depend on dietary intake to supply the elements required to develop and fuel the system. Diet in early life is often seen in the context of "programming" where a stimulus occurring during a vulnerable period can have long-lasting or even lifetime effects on some aspect of the organism's structure or function. Nutrition was first shown to be a programming stimulus for growth, and then for cognitive behavior, in animal studies that were able to employ methods that allowed the demonstration of neural effects of early nutrition. Such research raised the question of whether nutrition could also programme cognition/brain structure in humans. Initial studies of cognitive effects were observational, usually conducted in developing countries where the presence of confounding factors made it difficult to interpret the role of nutrition in the cognitive deficits that were seen. Attributing causality to nutrition required randomized controlled trials (RCTs) and these, often in developed countries, started to appear around 30 years ago. Most demonstrated convincingly that early nutrition could affect subsequent cognition. Until the advent of neuroimaging techniques that allowed in vivo examination of the brain, however, we could determine very little about the neural effects of early diet in humans. The combination of well-designed trials with neuroimaging tools means that we are now able to pose and answer questions that would have seemed impossible only recently. This review discusses various neuroimaging methods that are suitable for use in nutrition studies, while pointing out some of the limitations that they may have. The existing literature is small, but examples of studies that have used these methods are presented. Finally, some considerations that have arisen from previous studies, as well as suggestions for future research, are discussed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 88 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 88 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 15 17%
Student > Ph. D. Student 13 15%
Student > Bachelor 13 15%
Researcher 8 9%
Other 5 6%
Other 12 14%
Unknown 22 25%
Readers by discipline Count As %
Medicine and Dentistry 16 18%
Psychology 13 15%
Neuroscience 11 13%
Agricultural and Biological Sciences 8 9%
Engineering 4 5%
Other 10 11%
Unknown 26 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 August 2013.
All research outputs
#16,270,647
of 24,943,708 outputs
Outputs from Frontiers in Human Neuroscience
#5,058
of 7,585 outputs
Outputs of similar age
#186,657
of 292,957 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#638
of 861 outputs
Altmetric has tracked 24,943,708 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,585 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.9. This one is in the 32nd percentile – i.e., 32% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 292,957 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 861 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.