↓ Skip to main content

Stimulus-level interference disrupts repetition benefit during task switching in middle childhood

Overview of attention for article published in Frontiers in Human Neuroscience, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Stimulus-level interference disrupts repetition benefit during task switching in middle childhood
Published in
Frontiers in Human Neuroscience, January 2013
DOI 10.3389/fnhum.2013.00841
Pubmed ID
Authors

Frini Karayanidis, Sharna Jamadar, Dearne Sanday

Abstract

The task-switching paradigm provides a powerful tool to measure the development of core cognitive control processes. In this study, we use the alternating runs task-switching paradigm to assess preparatory control processes involved in flexibly preparing for a predictable change in task and stimulus-driven control processes involved in controlling stimulus-level interference. We present three experiments that examine behavioral and event-related potential (ERP) measures of task-switching performance in middle childhood and young adulthood under low and high stimulus interference conditions. Experiment 1 confirms that our new child-friendly tasks produce similar behavioral and electrophysiological findings in young adults as those previously reported. Experiment 2 examines task switching with univalent stimuli across a range of preparation intervals in middle childhood. Experiment 3 compares task switching with bivalent stimuli across the same preparation intervals in children and young adults. Children produced a larger RT switch cost than adults with univalent stimuli and a short preparation interval. Both children and adults showed significant reduction in switch cost with increasing preparation interval, but in children this was caused by greater increase in RT for repeat than switch trials. Response-locked ERPs showed intact preparation for univalent, but less efficient preparation for bivalent stimulus conditions. Stimulus-locked ERPs confirmed that children showed greater stimulus-level interference for repeat trials, especially with bivalent stimuli. We conclude that children show greater stimulus-level interference especially for repeat trials under high interference conditions, suggesting weaker mental representation of the current task set.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 15%
Researcher 6 15%
Student > Bachelor 4 10%
Student > Master 4 10%
Professor 3 7%
Other 7 17%
Unknown 11 27%
Readers by discipline Count As %
Psychology 17 41%
Neuroscience 3 7%
Engineering 2 5%
Agricultural and Biological Sciences 1 2%
Arts and Humanities 1 2%
Other 2 5%
Unknown 15 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 December 2013.
All research outputs
#20,210,424
of 22,731,677 outputs
Outputs from Frontiers in Human Neuroscience
#6,528
of 7,135 outputs
Outputs of similar age
#248,807
of 280,774 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#817
of 862 outputs
Altmetric has tracked 22,731,677 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,135 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,774 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 862 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.