↓ Skip to main content

Scale and pattern of atrophy in the chronic stages of moderate-severe TBI

Overview of attention for article published in Frontiers in Human Neuroscience, March 2014
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (62nd percentile)

Mentioned by

blogs
1 blog
twitter
1 X user

Readers on

mendeley
90 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Scale and pattern of atrophy in the chronic stages of moderate-severe TBI
Published in
Frontiers in Human Neuroscience, March 2014
DOI 10.3389/fnhum.2014.00067
Pubmed ID
Authors

Robin E. A. Green, Brenda Colella, Jerome J. Maller, Mark Bayley, Joanna Glazer, David J. Mikulis

Abstract

Background: Moderate-severe traumatic brain injury (TBI) is increasingly being understood as a progressive disorder, with growing evidence of reduced brain volume and white matter (WM) integrity as well as lesion expansion in the chronic phases of injury. The scale of these losses has yet to be investigated, and pattern of change across structures has received limited attention. Objectives: (1) To measure the percentage of patients in our TBI sample showing atrophy from 5 to 20 months post-injury in the whole brain and in structures with known vulnerability to acute TBI, and (2) To examine relative vulnerability and patterns of volume loss across structures. Methods: Fifty-six TBI patients [complicated mild to severe, with mean Glasgow Coma Scale (GCS) in severe range] underwent MRI at, on average, 5 and 20 months post-injury; 12 healthy controls underwent MRI twice, with a mean gap between scans of 25.4 months. Mean monthly percent volume change was computed for whole brain (ventricle-to-brain ratio; VBR), corpus callosum (CC), and right and left hippocampi (HPC). Results: (1) Using a threshold of 2 z-scores below controls, 96% of patients showed atrophy across time points in at least one region; 75% showed atrophy in at least 3 of the 4 regions measured. (2) There were no significant differences in the proportion of patients who showed atrophy across structures. For those showing decline in VBR, there was a significant association with both the CC and the right HPC (P < 0.05 for both comparisons). There were also significant associations between those showing decline in (i) right and left HPC (P < 0.05); (ii) all combinations of genu, body and splenium of the CC (P < 0.05), and (iii) head and tail of the right HPC (P < 0.05 all sub-structure comparisons). Conclusions: Atrophy in chronic TBI is robust, and the CC, right HPC and left HPC appear equally vulnerable. Significant associations between the right and left HPC, and within substructures of the CC and right HPC, raise the possibility of common mechanisms for these regions, including transneuronal degeneration. Given the 96% incidence rate of atrophy, a genetic explanation is unlikely to explain all findings. Multiple and possibly synergistic mechanisms may explain findings. Atrophy has been associated with poorer functional outcomes, but recent findings suggest there is potential to offset this. A better, understanding of the underlying mechanisms could permit targeted therapy enabling better long-term outcomes.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 90 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 2 2%
Netherlands 1 1%
Germany 1 1%
Ireland 1 1%
Unknown 85 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 18%
Researcher 12 13%
Student > Bachelor 12 13%
Student > Master 11 12%
Professor > Associate Professor 5 6%
Other 11 12%
Unknown 23 26%
Readers by discipline Count As %
Neuroscience 21 23%
Psychology 14 16%
Medicine and Dentistry 13 14%
Agricultural and Biological Sciences 4 4%
Nursing and Health Professions 1 1%
Other 5 6%
Unknown 32 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 July 2014.
All research outputs
#3,580,527
of 22,754,104 outputs
Outputs from Frontiers in Human Neuroscience
#1,694
of 7,138 outputs
Outputs of similar age
#36,236
of 226,158 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#61
of 164 outputs
Altmetric has tracked 22,754,104 research outputs across all sources so far. Compared to these this one has done well and is in the 84th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,138 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.5. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 226,158 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 164 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.