↓ Skip to main content

Modeling dopaminergic and other processes involved in learning from reward prediction error: contributions from an individual differences perspective

Overview of attention for article published in Frontiers in Human Neuroscience, September 2014
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Modeling dopaminergic and other processes involved in learning from reward prediction error: contributions from an individual differences perspective
Published in
Frontiers in Human Neuroscience, September 2014
DOI 10.3389/fnhum.2014.00740
Pubmed ID
Authors

Alan D. Pickering, Francesca Pesola

Abstract

Phasic firing changes of midbrain dopamine neurons have been widely characterized as reflecting a reward prediction error (RPE). Major personality traits (e.g., extraversion) have been linked to inter-individual variations in dopaminergic neurotransmission. Consistent with these two claims, recent research (Smillie et al., 2011; Cooper et al., 2014) found that extraverts exhibited larger RPEs than introverts, as reflected in feedback related negativity (FRN) effects in EEG recordings. Using an established, biologically-localized RPE computational model, we successfully simulated dopaminergic cell firing changes which are thought to modulate the FRN. We introduced simulated individual differences into the model: parameters were systematically varied, with stable values for each simulated individual. We explored whether a model parameter might be responsible for the observed covariance between extraversion and the FRN changes in real data, and argued that a parameter is a plausible source of such covariance if parameter variance, across simulated individuals, correlated almost perfectly with the size of the simulated dopaminergic FRN modulation, and created as much variance as possible in this simulated output. Several model parameters met these criteria, while others did not. In particular, variations in the strength of connections carrying excitatory reward drive inputs to midbrain dopaminergic cells were considered plausible candidates, along with variations in a parameter which scales the effects of dopamine cell firing bursts on synaptic modification in ventral striatum. We suggest possible neurotransmitter mechanisms underpinning these model parameters. Finally, the limitations and possible extensions of our general approach are discussed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 4%
United States 2 4%
Canada 1 2%
Unknown 40 89%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 20%
Researcher 9 20%
Student > Doctoral Student 6 13%
Professor > Associate Professor 4 9%
Student > Master 4 9%
Other 7 16%
Unknown 6 13%
Readers by discipline Count As %
Psychology 24 53%
Neuroscience 7 16%
Social Sciences 1 2%
Medicine and Dentistry 1 2%
Unknown 12 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 September 2014.
All research outputs
#17,726,563
of 22,763,032 outputs
Outputs from Frontiers in Human Neuroscience
#5,703
of 7,138 outputs
Outputs of similar age
#170,129
of 252,707 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#207
of 254 outputs
Altmetric has tracked 22,763,032 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,138 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.5. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 252,707 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 254 others from the same source and published within six weeks on either side of this one. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.