↓ Skip to main content

Geometrical illusions are not always where you think they are: a review of some classical and less classical illusions, and ways to describe them

Overview of attention for article published in Frontiers in Human Neuroscience, October 2014
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
1 X user
facebook
1 Facebook page
wikipedia
2 Wikipedia pages

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Geometrical illusions are not always where you think they are: a review of some classical and less classical illusions, and ways to describe them
Published in
Frontiers in Human Neuroscience, October 2014
DOI 10.3389/fnhum.2014.00856
Pubmed ID
Authors

Jacques Ninio

Abstract

Geometrical illusions are known through a small core of classical illusions that were discovered in the second half of the nineteenth century. Most experimental studies and most theoretical discussions revolve around this core of illusions, as though all other illusions were obvious variants of these. Yet, many illusions, mostly described by German authors at the same time or at the beginning of the twentieth century have been forgotten and are awaiting their rehabilitation. Recently, several new illusions were discovered, mainly by Italian authors, and they do not seem to take place into any current classification. Among the principles that are invoked to explain the illusions, there are principles relating to the metric aspects (contrast, assimilation, shrinkage, expansion, attraction of parallels) principles relating to orientations (regression to right angles, orthogonal expansion) or, more recently, to gestalt effects. Here, metric effects are discussed within a measurement framework, in which the geometric illusions are the outcome of a measurement process. There would be a main "convexity" bias in the measures: the measured value m(x) of an extant x would grow more than proportionally with x. This convexity principle, completed by a principle of compromise for conflicting measures can replace, for a large number of patterns, both the assimilation and the contrast effects. We know from evolutionary theory that the most pertinent classification criteria may not be the most salient ones (e.g., a dolphin is not a fish). In order to obtain an objective classification of illusions, I initiated with Kevin O'Regan systematic work on "orientation profiles" (describing how the strength of an illusion varies with its orientation in the plane). We showed first that the Zöllner illusion already exists at the level of single stacks, and that it does not amount to a rotation of the stacks. Later work suggested that it is best described by an "orthogonal expansion"-an expansion of the stacks applied orthogonally to the oblique segments of the stacks, generating an apparent rotation effect. We showed that the Poggendorff illusion was mainly a misangulation effect. We explained the hierarchy of the illusion magnitudes found among variants of the Poggendorff illusion by the existence of control devices that counteract the loss of parallelism or the loss of collinearity produced by the biased measurements. I then studied the trapezium illusion. The oblique sides, but not the bases, were essential to the trapezium illusion, suggesting the existence of a common component between the trapezium and the Zöllner illusion. Unexpectedly, the trapeziums sometimes appeared as twisted surfaces in 3d. It also appeared impossible, using a nulling procedure, to make all corresponding sides of two trapeziums simultaneously equal. The square-diamond illusion is usually presented with one apex of the diamond pointing toward the square. I found that when the figures were displayed more symmetrically, the illusion was significantly reduced. Furthermore, it is surpassed, for all subjects, by an illusion that goes in the opposite direction, in which the diagonal of a small diamond is underestimated with respect to the side of a larger square. In general, the experimental work generated many unexpected results. Each illusory stimulus was compared to a number of control variants, and often, I measured larger distortions in a variant than in the standard stimulus. In the Discussion, I will stress what I think are the main ordering principle in the metric and the orientation domains for illusory patterns. The convexity bias principle and the orthogonal expansion principles help to establish unsuspected links between apparently unrelated stimuli, and reduce their apparently extreme heterogeneity. However, a number of illusions (e.g., those of the twisted cord family, or the Poggendorff illusions) remain unpredicted by the above principles. Finally, I will develop the idea that the brain is constructing several representations, and the one that is commonly used for the purpose of shape perception generates distortions inasmuch as it must satisfy a number of conflicting constraints, such as the constraint of producing a stable shape despite the changing perspectives produced by eye movements.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 5%
Germany 1 2%
Switzerland 1 2%
Unknown 52 91%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 25%
Researcher 13 23%
Student > Bachelor 4 7%
Student > Doctoral Student 3 5%
Student > Postgraduate 3 5%
Other 10 18%
Unknown 10 18%
Readers by discipline Count As %
Psychology 17 30%
Neuroscience 6 11%
Agricultural and Biological Sciences 6 11%
Linguistics 4 7%
Medicine and Dentistry 2 4%
Other 6 11%
Unknown 16 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 March 2024.
All research outputs
#6,536,352
of 23,575,882 outputs
Outputs from Frontiers in Human Neuroscience
#2,675
of 7,323 outputs
Outputs of similar age
#70,315
of 261,510 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#105
of 236 outputs
Altmetric has tracked 23,575,882 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 7,323 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.5. This one has gotten more attention than average, scoring higher than 63% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 261,510 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 236 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.