↓ Skip to main content

Cascaded processing in written compound word production

Overview of attention for article published in Frontiers in Human Neuroscience, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cascaded processing in written compound word production
Published in
Frontiers in Human Neuroscience, April 2015
DOI 10.3389/fnhum.2015.00207
Pubmed ID
Authors

Raymond Bertram, Finn Egil Tønnessen, Sven Strömqvist, Jukka Hyönä, Pekka Niemi

Abstract

In this study we investigated the intricate interplay between central linguistic processing and peripheral motor processes during typewriting. Participants had to typewrite two-constituent (noun-noun) Finnish compounds in response to picture presentation while their typing behavior was registered. As dependent measures we used writing onset time to assess what processes were completed before writing and inter-key intervals to assess what processes were going on during writing. It was found that writing onset time was determined by whole word frequency rather than constituent frequencies, indicating that compound words are retrieved as whole orthographic units before writing is initiated. In addition, we found that the length of the first syllable also affects writing onset time, indicating that the first syllable is fully prepared before writing commences. The inter-key interval results showed that linguistic planning is not fully ready before writing, but cascades into the motor execution phase. More specifically, inter-key intervals were largest at syllable and morpheme boundaries, supporting the view that additional linguistic planning takes place at these boundaries. Bigram and trigram frequency also affected inter-key intervals with shorter intervals corresponding to higher frequencies. This can be explained by stronger memory traces for frequently co-occurring letter sequences in the motor memory for typewriting. These frequency effects were even larger in the second than in the first constituent, indicating that low-level motor memory starts to become more important during the course of writing compound words. We discuss our results in the light of current models of morphological processing and written word production.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 2%
Unknown 55 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 29%
Researcher 8 14%
Professor 7 13%
Student > Doctoral Student 3 5%
Lecturer 3 5%
Other 10 18%
Unknown 9 16%
Readers by discipline Count As %
Psychology 22 39%
Linguistics 9 16%
Social Sciences 4 7%
Computer Science 3 5%
Nursing and Health Professions 1 2%
Other 3 5%
Unknown 14 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 March 2015.
All research outputs
#15,327,280
of 22,796,179 outputs
Outputs from Frontiers in Human Neuroscience
#5,262
of 7,145 outputs
Outputs of similar age
#157,711
of 265,397 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#138
of 182 outputs
Altmetric has tracked 22,796,179 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,145 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,397 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 182 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.