↓ Skip to main content

Decoding covert shifts of attention induced by ambiguous visuospatial cues

Overview of attention for article published in Frontiers in Human Neuroscience, June 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Decoding covert shifts of attention induced by ambiguous visuospatial cues
Published in
Frontiers in Human Neuroscience, June 2015
DOI 10.3389/fnhum.2015.00358
Pubmed ID
Authors

Romain E. Trachel, Maureen Clerc, Thomas G. Brochier

Abstract

Simple and unambiguous visual cues (e.g., an arrow) can be used to trigger covert shifts of visual attention away from the center of gaze. The processing of visual stimuli is enhanced at the attended location. Covert shifts of attention modulate the power of cerebral oscillations in the alpha band over parietal and occipital regions. These modulations are sufficiently robust to be decoded on a single trial basis from electroencephalography (EEG) signals. It is often assumed that covert attention shifts are under voluntary control, and that they also occur in more natural and complex environments, but there is no direct evidence to support this assumption. We address this important issue by using random-dot stimuli to cue one of two opposite locations, where a visual target is presented. We contrast two conditions, one in which the random-dot motion is predictive of the target location, and the other, in which it provides ambiguous information. Behavioral results show attention shifts in anticipation of the visual target, in both conditions. In addition, using the common spatial patterns (CSPs) algorithm, we extract EEG power features in the alpha-band (around 10 Hz) that best discriminate the attended location in single trials. We obtain a significant decoding accuracy in 7/10 subjects using a cross-validation procedure applied in the predictive condition. Interestingly, similar accuracy (significant in 5/10 subjects) is obtained when the CSPs trained in the predictive condition are tested in the ambiguous condition. In agreement with this result, we find that the CSPs show very similar topographies in both conditions. These results shed a new light on the behavioral and EEG correlates of visuospatial attention in complex visual environments. This study demonstrates that alpha-power features could be used in brain-computer interfaces to decode covert attention shifts in an environment containing ambiguous spatial information.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 3%
France 1 3%
Unknown 34 94%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 6 17%
Student > Ph. D. Student 6 17%
Researcher 5 14%
Student > Master 5 14%
Student > Postgraduate 2 6%
Other 3 8%
Unknown 9 25%
Readers by discipline Count As %
Psychology 6 17%
Engineering 6 17%
Neuroscience 4 11%
Medicine and Dentistry 2 6%
Computer Science 2 6%
Other 2 6%
Unknown 14 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 June 2015.
All research outputs
#20,712,517
of 23,312,088 outputs
Outputs from Frontiers in Human Neuroscience
#6,616
of 7,264 outputs
Outputs of similar age
#221,440
of 265,516 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#160
of 175 outputs
Altmetric has tracked 23,312,088 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,264 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,516 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 175 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.