↓ Skip to main content

Individual differences in oscillatory brain activity in response to varying attentional demands during a word recall and oculomotor dual task

Overview of attention for article published in Frontiers in Human Neuroscience, June 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Individual differences in oscillatory brain activity in response to varying attentional demands during a word recall and oculomotor dual task
Published in
Frontiers in Human Neuroscience, June 2015
DOI 10.3389/fnhum.2015.00381
Pubmed ID
Authors

Gusang Kwon, Sanghyun Lim, Min-Young Kim, Hyukchan Kwon, Yong-Ho Lee, Kiwoong Kim, Eun-Ju Lee, Minah Suh

Abstract

Every day, we face situations that involve multi-tasking. How our brain utilizes cortical resources during multi-tasking is one of many interesting research topics. In this study, we tested whether a dual-task can be differentiated in the neural and behavioral responses of healthy subjects with varying degree of working memory capacity (WMC). We combined word recall and oculomotor tasks because they incorporate common neural networks including the fronto-parietal (FP) network. Three different types of oculomotor tasks (eye fixation, Fix-EM; predictive and random smooth pursuit eye movement, P-SPEM and R-SPEM) were combined with two memory load levels (low-load: five words, high-load: 10 words) for a word recall task. Each of those dual-task combinations was supposed to create varying cognitive loads on the FP network. We hypothesize that each dual-task requires different cognitive strategies for allocating the brain's limited cortical resources and affects brain oscillation of the FP network. In addition, we hypothesized that groups with different WMC will show differential neural and behavioral responses. We measured oscillatory brain activity with simultaneous MEG and EEG recordings and behavioral performance by word recall. Prominent frontal midline (FM) theta (4-6 Hz) synchronization emerged in the EEG of the high-WMC group experiencing R-SPEM with high-load conditions during the early phase of the word maintenance period. Conversely, significant parietal upper alpha (10-12 Hz) desynchronization was observed in the EEG and MEG of the low-WMC group experiencing P-SPEM under high-load conditions during the same period. Different brain oscillatory patterns seem to depend on each individual's WMC and varying attentional demands from different dual-task combinations. These findings suggest that specific brain oscillations may reflect different strategies for allocating cortical resources during combined word recall and oculomotor dual-tasks.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 2%
Unknown 55 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 14 25%
Student > Ph. D. Student 8 14%
Student > Bachelor 8 14%
Researcher 6 11%
Student > Doctoral Student 3 5%
Other 9 16%
Unknown 8 14%
Readers by discipline Count As %
Psychology 14 25%
Neuroscience 9 16%
Medicine and Dentistry 6 11%
Agricultural and Biological Sciences 3 5%
Computer Science 2 4%
Other 12 21%
Unknown 10 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 July 2015.
All research outputs
#15,287,833
of 22,815,414 outputs
Outputs from Frontiers in Human Neuroscience
#5,199
of 7,148 outputs
Outputs of similar age
#153,165
of 263,394 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#121
of 163 outputs
Altmetric has tracked 22,815,414 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,148 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,394 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 163 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.