↓ Skip to main content

Neural correlates of the self-reference effect: evidence from evaluation and recognition processes

Overview of attention for article published in Frontiers in Human Neuroscience, June 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (56th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
72 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Neural correlates of the self-reference effect: evidence from evaluation and recognition processes
Published in
Frontiers in Human Neuroscience, June 2015
DOI 10.3389/fnhum.2015.00383
Pubmed ID
Authors

Ken Yaoi, Mariko Osaka, Naoyuki Osaka

Abstract

The self-reference effect (SRE) is defined as better recall or recognition performance when the memorized materials refer to the self. Recently, a number of neuroimaging studies using self-referential and other-referential tasks have reported that self- and other-referential judgments basically show greater activation in common brain regions, specifically in the medial prefrontal cortex (MPFC) when compared with nonmentalizing judgments, but that a ventral-to-dorsal gradient in MPFC emerges from a direct comparison between self- and other-judgments. However, most of these previous studies could not provide an adequate explanation for the neural basis of SRE because they did not directly compare brain activation for recognition/recall of the words referenced to the self with another person. Here, we used an event-related functional magnetic resonance imaging (fMRI) that measured brain activity during processing of references to the self and another, and for recognition of self and other referenced words. Results from the fMRI evaluation task indicated greater activation in ventromedial prefrontal cortex (VMPFC) in the self-referential condition. While in the recognition task, VMPFC, posterior cingulate cortex (PCC) and bilateral angular gyrus (AG) showed greater activation when participants correctly recognized self-referenced words versus other-referenced words. These data provide evidence that the self-referenced words evoked greater activation in the self-related region (VMPFC) and memory-related regions (PCC and AG) relative to another person in the retrieval phase, and that the words remained as a stronger memory trace that supports recognition.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 1%
Unknown 71 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 18%
Researcher 13 18%
Student > Master 9 13%
Student > Bachelor 8 11%
Student > Doctoral Student 5 7%
Other 10 14%
Unknown 14 19%
Readers by discipline Count As %
Psychology 36 50%
Neuroscience 9 13%
Medicine and Dentistry 5 7%
Agricultural and Biological Sciences 3 4%
Social Sciences 1 1%
Other 3 4%
Unknown 15 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 July 2015.
All research outputs
#12,734,135
of 22,813,792 outputs
Outputs from Frontiers in Human Neuroscience
#3,493
of 7,148 outputs
Outputs of similar age
#113,515
of 263,585 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#82
of 172 outputs
Altmetric has tracked 22,813,792 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,148 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,585 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.
We're also able to compare this research output to 172 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.