↓ Skip to main content

Neural correlates of reward processing in healthy siblings of patients with schizophrenia

Overview of attention for article published in Frontiers in Human Neuroscience, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Neural correlates of reward processing in healthy siblings of patients with schizophrenia
Published in
Frontiers in Human Neuroscience, September 2015
DOI 10.3389/fnhum.2015.00504
Pubmed ID
Authors

Esther Hanssen, Jorien van der Velde, Paula M. Gromann, Sukhi S. Shergill, Lieuwe de Haan, Richard Bruggeman, Lydia Krabbendam, André Aleman, Nienke van Atteveldt

Abstract

Deficits in motivational behavior and psychotic symptoms often observed in schizophrenia (SZ) may be driven by dysfunctional reward processing (RP). RP can be divided in two different stages; reward anticipation and reward consumption. Aberrant processing during reward anticipation seems to be related to SZ. Studies in patients with SZ have found less activation in the ventral striatum (VS) during anticipation of reward, but these findings do not provide information on effect of the genetic load on reward processing. Therefore, this study investigated RP in healthy first-degree relatives of SZ patients. The sample consisted of 94 healthy siblings of SZ patients and 57 healthy controls. Participants completed a classic RP task, the Monetary Incentive Delay task, during functional magnetic resonance imaging (fMRI). As expected, there were no behavioral differences between groups. In contrast to our expectations, we found no differences in any of the anticipatory reward related brain areas (region of interest analyses). Whole-brain analyses did reveal group differences during both reward anticipation and reward consumption; during reward anticipation siblings showed less deactivation in the insula, posterior cingulate cortex (PCC) and medial frontal gyrus (MFG) than controls. During reward consumption siblings showed less deactivation in the PCC and the right MFG compared to controls and activation in contrast to deactivation in controls in the precuneus and the left MFG. Exclusively in siblings, MFG activity correlated positively with subclinical negative symptoms. These regions are typically associated with the default mode network (DMN), which normally shows decreases in activation during task-related cognitive processes. Thus, in contrast to prior literature in patients with SZ, the results do not point to altered brain activity in classical RP brain areas, such as the VS. However, the weaker deactivation found outside the reward-related network in siblings could indicate reduced task-related suppression (i.e., hyperactivation) of the DMN. The presence of DMN hyperactivation during reward anticipation and reward consumption might indicate that siblings of patients with SZ have a higher baseline level of DMN activation and possible abnormal network functioning.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Sweden 1 2%
Unknown 61 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 19%
Student > Master 12 19%
Researcher 9 15%
Student > Doctoral Student 5 8%
Other 5 8%
Other 5 8%
Unknown 14 23%
Readers by discipline Count As %
Psychology 20 32%
Neuroscience 10 16%
Medicine and Dentistry 3 5%
Biochemistry, Genetics and Molecular Biology 2 3%
Agricultural and Biological Sciences 1 2%
Other 0 0%
Unknown 26 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 October 2015.
All research outputs
#14,824,070
of 22,826,360 outputs
Outputs from Frontiers in Human Neuroscience
#4,912
of 7,150 outputs
Outputs of similar age
#151,658
of 274,813 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#90
of 154 outputs
Altmetric has tracked 22,826,360 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,150 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,813 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 154 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.