↓ Skip to main content

The Effects of Repeated Testing, Simulated Malingering, and Traumatic Brain Injury on High-Precision Measures of Simple Visual Reaction Time

Overview of attention for article published in Frontiers in Human Neuroscience, November 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (65th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Effects of Repeated Testing, Simulated Malingering, and Traumatic Brain Injury on High-Precision Measures of Simple Visual Reaction Time
Published in
Frontiers in Human Neuroscience, November 2015
DOI 10.3389/fnhum.2015.00540
Pubmed ID
Authors

David L. Woods, John M. Wyma, E. William Yund, Timothy J. Herron

Abstract

Simple reaction time (SRT), the latency to respond to a stimulus, has been widely used as a basic measure of processing speed. In the current experiments, we examined clinically-relevant properties of a new SRT test that presents visual stimuli to the left or right hemifield at varying stimulus onset asynchronies (SOAs). Experiment 1 examined test-retest reliability in 48 participants who underwent three test sessions at weekly intervals. In the first test, log-transformed (log-SRT) z-scores, corrected for the influence of age and computer-use, were well predicted by regression functions derived from a normative population of 189 control participants. Test-retest reliability of log-SRT z-scores was measured with an intraclass correlation coefficient (ICC = 0.83) and equaled or exceeded those of other SRT tests and other widely used tests of processing speed that are administered manually. No significant learning effects were observed across test sessions. Experiment 2 investigated the same participants when instructed to malinger during a fourth testing session: 94% showed abnormal log-SRT z-scores, with 83% producing log-SRT z-scores exceeding a cutoff of 3.0, a degree of abnormality never seen in full-effort conditions. Thus, a log-SRT z-score cutoff of 3.0 had a sensitivity (83%) and specificity (100%) that equaled or exceeded that of existing symptom validity tests. We argue that even expert malingerers, fully informed of the malingering-detection metric, would be unable to successfully feign impairments on the SRT test because of the precise control of SRT latencies that would be required. Experiment 3 investigated 26 patients with traumatic brain injury (TBI) tested more than 1 year post-injury. The 22 patients with mild TBI showed insignificantly faster SRTs than controls, but a small group of four patients with severe TBI showed slowed SRTs. Simple visual reaction time is a reliable measure of processing speed that is sensitive to the effects of malingering and TBI.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 17%
Student > Master 8 17%
Researcher 6 13%
Other 4 9%
Student > Bachelor 3 6%
Other 7 15%
Unknown 11 23%
Readers by discipline Count As %
Medicine and Dentistry 7 15%
Psychology 7 15%
Neuroscience 4 9%
Social Sciences 3 6%
Engineering 2 4%
Other 7 15%
Unknown 17 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 November 2015.
All research outputs
#7,594,735
of 23,299,593 outputs
Outputs from Frontiers in Human Neuroscience
#3,244
of 7,260 outputs
Outputs of similar age
#96,766
of 286,070 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#65
of 158 outputs
Altmetric has tracked 23,299,593 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 7,260 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 286,070 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.
We're also able to compare this research output to 158 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.