↓ Skip to main content

Impaired Communication Between the Dorsal and Ventral Stream: Indications from Apraxia

Overview of attention for article published in Frontiers in Human Neuroscience, February 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Impaired Communication Between the Dorsal and Ventral Stream: Indications from Apraxia
Published in
Frontiers in Human Neuroscience, February 2016
DOI 10.3389/fnhum.2016.00008
Pubmed ID
Authors

Carys Evans, Martin G. Edwards, Lawrence J. Taylor, Magdalena Ietswaart

Abstract

Patients with apraxia perform poorly when demonstrating how an object is used, particularly when pantomiming the action. However, these patients are able to accurately identify, and to pick up and move objects, demonstrating intact ventral and dorsal stream visuomotor processing. Appropriate object manipulation for skilled use is thought to rely on integration of known and visible object properties associated with "ventro-dorsal" stream neural processes. In apraxia, it has been suggested that stored object knowledge from the ventral stream may be less readily available to incorporate into the action plan, leading to an over-reliance on the objects' visual affordances in object-directed motor behavior. The current study examined grasping performance in left hemisphere stroke patients with (N = 3) and without (N = 9) apraxia, and in age-matched healthy control participants (N = 14), where participants repeatedly grasped novel cylindrical objects of varying weight distribution. Across two conditions, object weight distribution was indicated by either a memory-associated cue (object color) or visual-spatial cue (visible dot over the weighted end). Participants were required to incorporate object-weight associations to effectively grasp and balance each object. Control groups appropriately adjusted their grasp according to each object's weight distribution across each condition, whereas throughout the task two of the three apraxic patients performed poorly on both the memory-associated and visual-spatial cue conditions. A third apraxic patient seemed to compensate for these difficulties but still performed differently to control groups. Patients with apraxia performed normally on the neutral control condition when grasping the evenly weighted version. The pattern of behavior in apraxic patients suggests impaired integration of visible and known object properties attributed to the ventro-dorsal stream: in learning to grasp the weighted object accurately, apraxic patients applied neither pure knowledge-based information (the memory-associated condition) nor higher-level information given in the visual-spatial cue condition. Disruption to ventro-dorsal stream predicts that apraxic patients will have difficulty learning to manipulate new objects on the basis of information other than low-level visual cues such as shape and size.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Italy 1 2%
Germany 1 2%
Unknown 52 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 24%
Student > Bachelor 10 18%
Researcher 8 15%
Student > Master 3 5%
Student > Doctoral Student 2 4%
Other 8 15%
Unknown 11 20%
Readers by discipline Count As %
Psychology 15 27%
Medicine and Dentistry 5 9%
Neuroscience 4 7%
Social Sciences 3 5%
Linguistics 2 4%
Other 12 22%
Unknown 14 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 April 2016.
All research outputs
#6,312,253
of 23,577,654 outputs
Outputs from Frontiers in Human Neuroscience
#2,528
of 7,319 outputs
Outputs of similar age
#101,306
of 400,704 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#54
of 165 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one has received more attention than most of these and is in the 73rd percentile.
So far Altmetric has tracked 7,319 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.5. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 400,704 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 165 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.