↓ Skip to main content

Rectilinear Edge Selectivity Is Insufficient to Explain the Category Selectivity of the Parahippocampal Place Area

Overview of attention for article published in Frontiers in Human Neuroscience, March 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Rectilinear Edge Selectivity Is Insufficient to Explain the Category Selectivity of the Parahippocampal Place Area
Published in
Frontiers in Human Neuroscience, March 2016
DOI 10.3389/fnhum.2016.00137
Pubmed ID
Authors

Peter B. Bryan, Joshua B. Julian, Russell A. Epstein

Abstract

The parahippocampal place area (PPA) is one of several brain regions that respond more strongly to scenes than to non-scene items such as objects and faces. The mechanism underlying this scene-preferential response remains unclear. One possibility is that the PPA is tuned to low-level stimulus features that are found more often in scenes than in less-preferred stimuli. Supporting this view, Nasr et al. (2014) recently observed that some of the stimuli that are known to strongly activate the PPA contain a large number of rectilinear edges. They further demonstrated that PPA response is modulated by rectilinearity for a range of non-scene images. Motivated by these results, we tested whether rectilinearity suffices to explain PPA selectivity for scenes. In the first experiment, we replicated the previous finding of modulation by rectilinearity in the PPA for arrays of 2-d shapes. However, two further experiments failed to find a rectilinearity effect for faces or scenes: high-rectilinearity faces and scenes did not activate the PPA any more strongly than low-rectilinearity faces and scenes. Moreover, the categorical advantage for scenes vs. faces was maintained in the PPA and two other scene-selective regions-the retrosplenial complex (RSC) and occipital place area (OPA)-when rectilinearity was matched between stimulus sets. We conclude that selectivity for scenes in the PPA cannot be explained by a preference for low-level rectilinear edges.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 2%
France 1 2%
Unknown 51 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 30%
Researcher 10 19%
Student > Bachelor 6 11%
Professor 2 4%
Student > Doctoral Student 2 4%
Other 11 21%
Unknown 6 11%
Readers by discipline Count As %
Psychology 25 47%
Neuroscience 9 17%
Medicine and Dentistry 3 6%
Agricultural and Biological Sciences 2 4%
Computer Science 2 4%
Other 3 6%
Unknown 9 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 April 2016.
All research outputs
#14,843,597
of 22,858,915 outputs
Outputs from Frontiers in Human Neuroscience
#4,918
of 7,163 outputs
Outputs of similar age
#170,531
of 300,631 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#122
of 162 outputs
Altmetric has tracked 22,858,915 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,163 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,631 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 162 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.