↓ Skip to main content

Different Effects of Startling Acoustic Stimuli (SAS) on TMS-Induced Responses at Rest and during Sustained Voluntary Contraction

Overview of attention for article published in Frontiers in Human Neuroscience, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Different Effects of Startling Acoustic Stimuli (SAS) on TMS-Induced Responses at Rest and during Sustained Voluntary Contraction
Published in
Frontiers in Human Neuroscience, August 2016
DOI 10.3389/fnhum.2016.00396
Pubmed ID
Authors

Yen-Ting Chen, Shengai Li, Ping Zhou, Sheng Li

Abstract

Previous studies have shown that a habituated startling acoustic stimulus (SAS) can cause a transient suppression of motor evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS) during light muscle contraction. However, it is still unknown whether this phenomenon persists when at rest or during a sustained voluntary contraction task. Therefore, the purpose of this study was to determine whether a conditioning SAS has different effects. TMS was delivered to the hot spot for the left biceps on 11 subjects at rest both with and without a conditioning SAS. Of the 11subjects, 9 also had TMS delivered during isometric flexion of the left elbow, also with and without a conditioning SAS. TMS-induced MEPs, TMS-induced force, and silent periods were used to determine the effect of conditioning SAS. Consistent with previous findings, TMS-induced MEPs were smaller with a conditioning SAS (0.49 ± 0.37 mV) as compared without the SAS (0.69 ± 0.52 mV) at rest. However, a conditioning SAS during the voluntary contraction tasks resulted in a significant shortening of the MEP silent period (187.22 ± 22.99 ms with SAS vs. 200.56 ± 29.71 ms without SAS) without any changes in the amplitude of the MEP (1.37 ± 0.9 mV with SAS V.S. 1.32 ± 0.92 mV without SAS) or the TMS-induced force (3.11 ± 2.03 N-m with SAS V.S. 3.62 ± 1.33 N-m without SAS). Our results provide novel evidence that a conditioning SAS has different effects on the excitability of the motor cortex when at rest or during sustained voluntary contractions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 5%
Serbia 1 5%
Unknown 20 91%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 23%
Student > Bachelor 4 18%
Researcher 4 18%
Student > Doctoral Student 2 9%
Professor 2 9%
Other 3 14%
Unknown 2 9%
Readers by discipline Count As %
Neuroscience 7 32%
Agricultural and Biological Sciences 3 14%
Medicine and Dentistry 2 9%
Sports and Recreations 2 9%
Unspecified 1 5%
Other 2 9%
Unknown 5 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 August 2016.
All research outputs
#14,268,650
of 22,881,154 outputs
Outputs from Frontiers in Human Neuroscience
#4,589
of 7,170 outputs
Outputs of similar age
#216,173
of 366,888 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#110
of 164 outputs
Altmetric has tracked 22,881,154 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,170 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 32nd percentile – i.e., 32% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 366,888 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 164 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.