↓ Skip to main content

Differential Effects of Visual-Acoustic Biofeedback Intervention for Residual Speech Errors

Overview of attention for article published in Frontiers in Human Neuroscience, November 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (75th percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
10 X users
facebook
1 Facebook page

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential Effects of Visual-Acoustic Biofeedback Intervention for Residual Speech Errors
Published in
Frontiers in Human Neuroscience, November 2016
DOI 10.3389/fnhum.2016.00567
Pubmed ID
Authors

Tara McAllister Byun, Heather Campbell

Abstract

Recent evidence suggests that the incorporation of visual biofeedback technologies may enhance response to treatment in individuals with residual speech errors. However, there is a need for controlled research systematically comparing biofeedback versus non-biofeedback intervention approaches. This study implemented a single-subject experimental design with a crossover component to investigate the relative efficacy of visual-acoustic biofeedback and traditional articulatory treatment for residual rhotic errors. Eleven child/adolescent participants received ten sessions of visual-acoustic biofeedback and 10 sessions of traditional treatment, with the order of biofeedback and traditional phases counterbalanced across participants. Probe measures eliciting untreated rhotic words were administered in at least three sessions prior to the start of treatment (baseline), between the two treatment phases (midpoint), and after treatment ended (maintenance), as well as before and after each treatment session. Perceptual accuracy of rhotic production was assessed by outside listeners in a blinded, randomized fashion. Results were analyzed using a combination of visual inspection of treatment trajectories, individual effect sizes, and logistic mixed-effects regression. Effect sizes and visual inspection revealed that participants could be divided into categories of strong responders (n = 4), mixed/moderate responders (n = 3), and non-responders (n = 4). Individual results did not reveal a reliable pattern of stronger performance in biofeedback versus traditional blocks, or vice versa. Moreover, biofeedback versus traditional treatment was not a significant predictor of accuracy in the logistic mixed-effects model examining all within-treatment word probes. However, the interaction between treatment condition and treatment order was significant: biofeedback was more effective than traditional treatment in the first phase of treatment, and traditional treatment was more effective than biofeedback in the second phase. This is consistent with existing theory and data suggesting that detailed knowledge of performance feedback is most effective in the early stages of motor learning. Further research is needed to confirm that an initial phase of biofeedback has a facilitative effect, and to determine the optimal duration of biofeedback treatment. In addition, there is a strong need for correlational studies to examine which individuals with residual speech errors are most likely to respond to treatment.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 47 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 17%
Unspecified 6 13%
Researcher 6 13%
Student > Doctoral Student 5 10%
Student > Master 5 10%
Other 11 23%
Unknown 7 15%
Readers by discipline Count As %
Psychology 8 17%
Unspecified 6 13%
Social Sciences 5 10%
Linguistics 4 8%
Medicine and Dentistry 3 6%
Other 14 29%
Unknown 8 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 November 2016.
All research outputs
#4,621,420
of 23,344,526 outputs
Outputs from Frontiers in Human Neuroscience
#2,060
of 7,271 outputs
Outputs of similar age
#75,972
of 312,184 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#46
of 166 outputs
Altmetric has tracked 23,344,526 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,271 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,184 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 75% of its contemporaries.
We're also able to compare this research output to 166 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.