↓ Skip to main content

Mapping Critical Language Sites in Children Performing Verb Generation: Whole-Brain Connectivity and Graph Theoretical Analysis in MEG

Overview of attention for article published in Frontiers in Human Neuroscience, April 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (62nd percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mapping Critical Language Sites in Children Performing Verb Generation: Whole-Brain Connectivity and Graph Theoretical Analysis in MEG
Published in
Frontiers in Human Neuroscience, April 2017
DOI 10.3389/fnhum.2017.00173
Pubmed ID
Authors

Vahab Youssofzadeh, Brady J. Williamson, Darren S. Kadis

Abstract

A classic left frontal-temporal brain network is known to support language processes. However, the level of participation of constituent regions, and the contribution of extra-canonical areas, is not fully understood; this is particularly true in children, and in individuals who have experienced early neurological insult. In the present work, we propose whole-brain connectivity and graph-theoretical analysis of magnetoencephalography (MEG) source estimates to provide robust maps of the pediatric expressive language network. We examined neuromagnetic data from a group of typically-developing young children (n = 15, ages 4-6 years) and adolescents (n = 14, 16-18 years) completing an auditory verb generation task in MEG. All source analyses were carried out using a linearly-constrained minimum-variance (LCMV) beamformer. Conventional differential analyses revealed significant (p < 0.05, corrected) low-beta (13-23 Hz) event related desynchrony (ERD) focused in the left inferior frontal region (Broca's area) in both groups, consistent with previous studies. Connectivity analyses were carried out in broadband (3-30 Hz) on time-course estimates obtained at the voxel level. Patterns of connectivity were characterized by phase locking value (PLV), and network hubs identified through eigenvector centrality (EVC). Hub analysis revealed the importance of left perisylvian sites, i.e., Broca's and Wernicke's areas, across groups. The hemispheric distribution of frontal and temporal lobe EVC values was asymmetrical in most subjects; left dominant EVC was observed in 20% of young children, and 71% of adolescents. Interestingly, the adolescent group demonstrated increased critical sites in the right cerebellum, left inferior frontal gyrus (IFG) and left putamen. Here, we show that whole brain connectivity and network analysis can be used to map critical language sites in typical development; these methods may be useful for defining the margins of eloquent tissue in neurosurgical candidates.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 23%
Researcher 11 20%
Professor 5 9%
Student > Bachelor 4 7%
Student > Doctoral Student 3 5%
Other 10 18%
Unknown 10 18%
Readers by discipline Count As %
Neuroscience 17 30%
Psychology 10 18%
Nursing and Health Professions 3 5%
Social Sciences 2 4%
Engineering 2 4%
Other 7 13%
Unknown 15 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 December 2017.
All research outputs
#6,122,639
of 22,961,203 outputs
Outputs from Frontiers in Human Neuroscience
#2,490
of 7,180 outputs
Outputs of similar age
#98,413
of 309,565 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#71
of 192 outputs
Altmetric has tracked 22,961,203 research outputs across all sources so far. This one has received more attention than most of these and is in the 73rd percentile.
So far Altmetric has tracked 7,180 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,565 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 192 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.