↓ Skip to main content

A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP)

Overview of attention for article published in Frontiers in Human Neuroscience, June 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP)
Published in
Frontiers in Human Neuroscience, June 2017
DOI 10.3389/fnhum.2017.00278
Pubmed ID
Authors

Xing Zhao, Dechun Zhao, Xia Wang, Xiaorong Hou

Abstract

SSVEP is a kind of BCI technology with advantage of high information transfer rate. However, due to its nature, frequencies could be used as stimuli are scarce. To solve such problem, a stimuli encoding method which encodes SSVEP signal using Frequency Shift-Keying (FSK) method is developed. In this method, each stimulus is controlled by a FSK signal which contains three different frequencies that represent "Bit 0," "Bit 1" and "Bit 2" respectively. Different to common BFSK in digital communication, "Bit 0" and "Bit 1" composited the unique identifier of stimuli in binary bit stream form, while "Bit 2" indicates the ending of a stimuli encoding. EEG signal is acquired on channel Oz, O1, O2, Pz, P3, and P4, using ADS1299 at the sample rate of 250 SPS. Before original EEG signal is quadrature demodulated, it is detrended and then band-pass filtered using FFT-based FIR filtering to remove interference. Valid peak of the processed signal is acquired by calculating its derivative and converted into bit stream using window method. Theoretically, this coding method could implement at least 2 (n-1) (n is the length of bit command) stimulus while keeping the ITR the same. This method is suitable to implement stimuli on a monitor and where the frequency and phase could be used to code stimuli is limited as well as implementing portable BCI devices which is not capable of performing complex calculations.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 33%
Student > Master 4 17%
Student > Doctoral Student 3 13%
Student > Bachelor 2 8%
Professor 1 4%
Other 1 4%
Unknown 5 21%
Readers by discipline Count As %
Engineering 10 42%
Neuroscience 4 17%
Computer Science 1 4%
Unspecified 1 4%
Psychology 1 4%
Other 0 0%
Unknown 7 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 June 2017.
All research outputs
#20,428,633
of 22,981,247 outputs
Outputs from Frontiers in Human Neuroscience
#6,556
of 7,182 outputs
Outputs of similar age
#276,305
of 317,447 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#178
of 180 outputs
Altmetric has tracked 22,981,247 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,182 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,447 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 180 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.