↓ Skip to main content

Sustained Attention in Real Classroom Settings: An EEG Study

Overview of attention for article published in Frontiers in Human Neuroscience, July 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
11 X users

Citations

dimensions_citation
151 Dimensions

Readers on

mendeley
305 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sustained Attention in Real Classroom Settings: An EEG Study
Published in
Frontiers in Human Neuroscience, July 2017
DOI 10.3389/fnhum.2017.00388
Pubmed ID
Authors

Li-Wei Ko, Oleksii Komarov, W. David Hairston, Tzyy-Ping Jung, Chin-Teng Lin

Abstract

Sustained attention is a process that enables the maintenance of response persistence and continuous effort over extended periods of time. Performing attention-related tasks in real life involves the need to ignore a variety of distractions and inhibit attention shifts to irrelevant activities. This study investigates electroencephalography (EEG) spectral changes during a sustained attention task within a real classroom environment. Eighteen healthy students were instructed to recognize as fast as possible special visual targets that were displayed during regular university lectures. Sorting their EEG spectra with respect to response times, which indicated the level of visual alertness to randomly introduced visual stimuli, revealed significant changes in the brain oscillation patterns. The results of power-frequency analysis demonstrated a relationship between variations in the EEG spectral dynamics and impaired performance in the sustained attention task. Across subjects and sessions, prolongation of the response time was preceded by an increase in the delta and theta EEG powers over the occipital region, and decrease in the beta power over the occipital and temporal regions. Meanwhile, implementation of the complex attention task paradigm into a real-world classroom setting makes it possible to investigate specific mutual links between brain activities and factors that cause impaired behavioral performance, such as development and manifestation of classroom mental fatigue. The findings of the study set a basis for developing a system capable of estimating the level of visual attention during real classroom activities by monitoring changes in the EEG spectra.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 305 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 305 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 45 15%
Student > Ph. D. Student 44 14%
Student > Bachelor 29 10%
Student > Doctoral Student 26 9%
Researcher 23 8%
Other 35 11%
Unknown 103 34%
Readers by discipline Count As %
Neuroscience 38 12%
Psychology 37 12%
Engineering 32 10%
Computer Science 26 9%
Medicine and Dentistry 10 3%
Other 46 15%
Unknown 116 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 June 2019.
All research outputs
#4,801,031
of 23,335,153 outputs
Outputs from Frontiers in Human Neuroscience
#2,153
of 7,273 outputs
Outputs of similar age
#82,772
of 317,329 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#54
of 144 outputs
Altmetric has tracked 23,335,153 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,273 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,329 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 144 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.