↓ Skip to main content

An Emotion-Enriched Context Influences the Effect of Action Observation on Cortical Excitability

Overview of attention for article published in Frontiers in Human Neuroscience, October 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
7 X users
facebook
1 Facebook page

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An Emotion-Enriched Context Influences the Effect of Action Observation on Cortical Excitability
Published in
Frontiers in Human Neuroscience, October 2017
DOI 10.3389/fnhum.2017.00504
Pubmed ID
Authors

Giovanna Lagravinese, Ambra Bisio, Alessia Raffo De Ferrari, Elisa Pelosin, Piero Ruggeri, Marco Bove, Laura Avanzino

Abstract

Observing other people in action activates the "mirror neuron system" that serves for action comprehension and prediction. Recent evidence suggests that this function requires a high level codification triggered not only by components of motor behavior, but also by the environment where the action is embedded. An overlooked component of action perceiving is the one related to the emotional information provided by the context where the observed action takes place. Indeed, whether valence and arousal associated to an emotion might exert an influence on motor system activation during action observation has not been assessed so far. Here, cortico-spinal excitability of the left motor cortex was recorded in three groups of subjects. In the first condition, motor-evoked potential (MEPs) were recorded from a muscle involved in the grasping movement (i.e., abductor pollicis brevis, APB) while participants were watching the same reach-to-grasp movement embedded in contexts with negative emotional valence, but different levels of arousal: sadness (low arousal), and disgust (high arousal) ("Context plus Movement-APB" condition). In the second condition, MEPs were recorded from APB muscle while participants were observing static images representing the contexts in which the movement observed by participants in "Context plus Movement-APB" condition took place ("Context Only-APB" condition). Finally, in the third condition, MEPS were recorded from a muscle not involved in the grasping action, i.e., abductor digiti minimi, ADM, while participants were watching the same videos shown during the "Context plus Movement-APB" condition ("Context plus Movement-ADM" condition). Results showed a greater increase of cortical excitability only during the observation of the hand moving in the context eliciting disgust, and these changes were specific for the muscle involved in the observed action. Our findings show that the emotional context in which a movement occurs modulates motor resonance and that the combination of negative valence/high arousal drives the greater response in the observer's mirror neuron system in a strictly muscle specific fashion.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 24%
Student > Bachelor 6 14%
Student > Master 6 14%
Researcher 5 12%
Student > Postgraduate 4 10%
Other 4 10%
Unknown 7 17%
Readers by discipline Count As %
Neuroscience 14 33%
Psychology 7 17%
Sports and Recreations 2 5%
Agricultural and Biological Sciences 2 5%
Computer Science 1 2%
Other 6 14%
Unknown 10 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 April 2018.
All research outputs
#7,753,975
of 23,577,654 outputs
Outputs from Frontiers in Human Neuroscience
#3,341
of 7,319 outputs
Outputs of similar age
#124,844
of 328,180 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#78
of 143 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,319 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.5. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,180 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 143 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.