↓ Skip to main content

Frequency-Specific Functional Connectivity Density as an Effective Biomarker for Adolescent Generalized Anxiety Disorder

Overview of attention for article published in Frontiers in Human Neuroscience, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Frequency-Specific Functional Connectivity Density as an Effective Biomarker for Adolescent Generalized Anxiety Disorder
Published in
Frontiers in Human Neuroscience, December 2017
DOI 10.3389/fnhum.2017.00549
Pubmed ID
Authors

Zhe Zhang, Mei Liao, Zhijun Yao, Bin Hu, Yuanwei Xie, Weihao Zheng, Tao Hu, Yu Zhao, Fan Yang, Yan Zhang, Linyan Su, Lingjiang Li, Jürg Gutknecht, Dennis Majoe

Abstract

Several neuropsychiatric diseases have been found to influence the frequency-specific spontaneous functional brain organization (SFBO) in resting state, demonstrating that the abnormal brain activities of different frequency bands are associated with various physiological and psychological dysfunctions. However, little is known about the frequency specificities of SFBO in adolescent generalized anxiety disorder (GAD). Here, a novel complete ensemble empirical mode decomposition with adaptive noise method was applied to decompose the time series of each voxel across all participants (31 adolescent patients with GAD and 28 matched healthy controls; HCs) into four frequency-specific bands with distinct intrinsic oscillation. The functional connectivity density (FCD) of different scales (short-range and long-range) was calculated to quantify the SFBO changes related to GAD within each above frequency-specific band and the conventional frequency band (0.01-0.08 Hz). Support vector machine classifier was further used to examine the discriminative ability of the frequency-specific FCD values. The results showed that adolescent GAD patients exhibited abnormal alterations of both short-range and long-range FCD (S-FCD and L-FCD) in widespread brain regions across three frequency-specific bands. Positive correlation between the State Anxiety Inventory (SAI) score and increased L-FCD in the fusiform gyrus in the conventional frequency band was found in adolescents with GAD. Both S-FCD and L-FCD in the insula in the lower frequency band (0.02-0.036 Hz) had the highest classification performance compared to all other brain regions with inter-group difference. Furthermore, a satisfactory classification performance was achieved by combining the discrepant S-FCD and L-FCD values in all frequency bands, with the area under the curve (AUC) value of 0.9414 and the corresponding sensitivity, specificity, and accuracy of 87.15, 92.92, and 89.83%, respectively. This study indicates that the alterations of SFBO in adolescent GAD are frequency dependence and the frequency-specific FCD can potentially serve as a valuable biomarker in discriminating GAD patients from HCs. These findings may provide new insights into the pathophysiological mechanisms of adolescent GAD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 32%
Student > Postgraduate 3 9%
Student > Ph. D. Student 3 9%
Student > Bachelor 1 3%
Professor 1 3%
Other 3 9%
Unknown 12 35%
Readers by discipline Count As %
Neuroscience 5 15%
Computer Science 4 12%
Psychology 4 12%
Medicine and Dentistry 3 9%
Nursing and Health Professions 2 6%
Other 1 3%
Unknown 15 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 December 2017.
All research outputs
#13,880,606
of 23,007,053 outputs
Outputs from Frontiers in Human Neuroscience
#4,229
of 7,190 outputs
Outputs of similar age
#224,380
of 439,552 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#97
of 158 outputs
Altmetric has tracked 23,007,053 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,190 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,552 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 158 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.