↓ Skip to main content

Weak but Critical Links between Primary Somatosensory Centers and Motor Cortex during Movement

Overview of attention for article published in Frontiers in Human Neuroscience, January 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Weak but Critical Links between Primary Somatosensory Centers and Motor Cortex during Movement
Published in
Frontiers in Human Neuroscience, January 2018
DOI 10.3389/fnhum.2018.00001
Pubmed ID
Authors

Pengxu Wei, Ruixue Bao, Zeping Lv, Bin Jing

Abstract

Motor performance is improved by stimulation of the agonist muscle during movement. However, related brain mechanisms remain unknown. In this work, we perform a functional magnetic resonance imaging (fMRI) study in 21 healthy subjects under three different conditions: (1) movement of right ankle alone; (2) movement and simultaneous stimulation of the agonist muscle; or (3) movement and simultaneous stimulation of a control area. We constructed weighted brain networks for each condition by using functional connectivity. Network features were analyzed using graph theoretical approaches. We found that: (1) the second condition evokes the strongest and most widespread brain activations (5147 vs. 4419 and 2320 activated voxels); and (2) this condition also induces a unique network layout and changes hubs and the modular structure of the brain motor network by activating the most "silent" links between primary somatosensory centers and the motor cortex, particularly weak links from the thalamus to the left primary motor cortex (M1). Significant statistical differences were found when the strength values of the right cerebellum (P < 0.001) or the left thalamus (P = 0.006) were compared among the three conditions. Over the years, studies reported a small number of projections from the thalamus to the motor cortex. This is the first work to present functions of these pathways. These findings reveal mechanisms for enhancing motor function with somatosensory stimulation, and suggest that network function cannot be thoroughly understood when weak ties are disregarded.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 16%
Student > Bachelor 5 10%
Student > Doctoral Student 5 10%
Other 4 8%
Researcher 4 8%
Other 11 22%
Unknown 13 26%
Readers by discipline Count As %
Neuroscience 8 16%
Nursing and Health Professions 5 10%
Psychology 5 10%
Medicine and Dentistry 3 6%
Engineering 3 6%
Other 9 18%
Unknown 17 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 January 2018.
All research outputs
#15,487,739
of 23,015,156 outputs
Outputs from Frontiers in Human Neuroscience
#5,289
of 7,191 outputs
Outputs of similar age
#270,269
of 441,878 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#130
of 155 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,191 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 441,878 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 155 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.