↓ Skip to main content

Multiple Looks of Auditory Empty Durations Both Improve and Impair Temporal Sensitivity

Overview of attention for article published in Frontiers in Human Neuroscience, February 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Multiple Looks of Auditory Empty Durations Both Improve and Impair Temporal Sensitivity
Published in
Frontiers in Human Neuroscience, February 2018
DOI 10.3389/fnhum.2018.00031
Pubmed ID
Authors

Tsuyoshi Kuroda, Daiki Yoshioka, Tomoya Ueda, Makoto Miyazaki

Abstract

Discrimination of two neighboring empty durations that are marked by three successive sounds is improved when the presentation of the first (standard, S) duration is repeated before that of the second (comparison, C), as SSSSC. This improvement in sensitivity, called the multiple-look effect, has been explained by a statistical model regarding variability. This model assumes that the perceived duration of the standard is averaged across observations (within a trial within an individual). The increasing of the number of observations thus reduces the standard error of the mean perceived duration. Alternatively, the multiple-look effect is attributed to the listener's prediction based on regular rhythm. Listeners perceive regular rhythm during the repetition of the standard, predict the timing of subsequent sounds, and detect a sound that is displaced from the predicted timing. These models were tested in the present experiment in which the main factor was a temporal separation between the standard and the comparison; i.e., these durations were adjacent to each other as SSSSC or separated by a temporal blank as SSSS_C. The results differed between stimulus structures. First, the multiple-look effect was replicated in the SSSSC condition (yielding a higher performance than SC), but disappeared in SSSS_C (having no difference with S_C). Second, no multiple-look effect occurred in CSSSS (no difference with CS), and moreover, an impairment effect was observed in C_SSSS (a lower performance than C_S). Finally, discrimination was improved in SSSS_CCCC compared with SSSSCCCC, the effect being kept even when sounds were aligned at irregular intervals. These findings are not consistent with those expected from the statistical model because the temporal separation should have produced no effects if the number of standards had been a sole parameter determining the multiple-look effect. The prediction-based model can explain the first finding; inserting a blank between the standard and the comparison violates the listener's prediction based on regular rhythm, thus reducing the multiple-look effect. However, it did not expect the other findings and required revisions. Notably, the second finding indicates that the formation of regular rhythm can impair temporal discrimination. In other words, aninversedmultiple-look effect occurs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 23%
Lecturer > Senior Lecturer 1 8%
Professor 1 8%
Student > Bachelor 1 8%
Student > Ph. D. Student 1 8%
Other 1 8%
Unknown 5 38%
Readers by discipline Count As %
Neuroscience 4 31%
Social Sciences 2 15%
Psychology 2 15%
Unknown 5 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 February 2018.
All research outputs
#18,583,054
of 23,016,919 outputs
Outputs from Frontiers in Human Neuroscience
#6,095
of 7,192 outputs
Outputs of similar age
#329,163
of 439,362 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#135
of 141 outputs
Altmetric has tracked 23,016,919 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,192 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 8th percentile – i.e., 8% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,362 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 141 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.