↓ Skip to main content

Elevated Cortisol Leaves Working Memory Unaffected in Both Men and Women

Overview of attention for article published in Frontiers in Human Neuroscience, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

blogs
1 blog
twitter
10 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Elevated Cortisol Leaves Working Memory Unaffected in Both Men and Women
Published in
Frontiers in Human Neuroscience, July 2018
DOI 10.3389/fnhum.2018.00299
Pubmed ID
Authors

Robyn Human, Michelle Henry, W. Jake Jacobs, Kevin G. F. Thomas

Abstract

Activation of the hypothalamic-pituitary-adrenal (HPA) axis (as might occur, for example, when the organism encounters a threat to allostatic balance) leads to the release of cortisol into the bloodstream and, ultimately, to altered neural functioning in particular brain regions (e.g., the prefrontal cortex (PFC)). Although previous studies suggest that exposure to acute psychosocial stress (and hence, presumably, elevation of circulating cortisol levels) enhances male performance on PFC-based working memory (WM) tasks, few studies have adequately investigated female performance on WM tasks under conditions of elevated cortisol. Hence, we compared associations between elevated (relative to baseline) levels of circulating cortisol and n-back performance in a South African sample (38 women in the late luteal phase of their menstrual cycle, 38 men). On Day 1, participants completed practice n-back tasks. On Day 2, some completed the Trier Social Stress Test (TSST), whereas others experienced a relaxation period, before completing 1-back and 3-back tasks. We measured self-reported anxiety and salivary cortisol at baseline, post-manipulation and end of session. We reconstituted group assignment so that all women with elevated cortisol were in one group (EC-Women; n = 17), all men with elevated cortisol were in another (EC-Men; n = 19), all women without elevated cortisol were in a third (NoEC-Women; n = 21), and all men without elevated cortisol were in a fourth (NoEC-Men; n = 19) group. Analyses suggested this reconstitution was effective: in EC, but not NoEC, groups cortisol levels rose significantly from baseline to post-manipulation. Analyses of n-back data detected significant relations to task load (i.e., better performance on 1-back than on 3-back tasks), but no significant relations to sex, performance accuracy/speed, or cortisol variation. The data patterns are inconsistent with reports describing sex differences in effects of stress on WM performance. We speculate that cross-study methodological differences account for these inconsistencies, and, particularly, that between-study variation in the magnitude of baseline cortisol levels might affect outcomes. For instance, diurnal cortisol rhythms of South African samples might have flatter curves, and lower baseline values, than predominantly Caucasian samples from the United States and western Europe due to greater prenatal and lifetime stress, more socioeconomic disadvantage and faster ancestral life history (LH) strategies. We describe ways to disconfirm this hypothesis, and urge further cross-national research exploring these possibilities.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 15 23%
Student > Bachelor 10 16%
Student > Ph. D. Student 7 11%
Researcher 4 6%
Other 4 6%
Other 5 8%
Unknown 19 30%
Readers by discipline Count As %
Psychology 25 39%
Neuroscience 4 6%
Agricultural and Biological Sciences 3 5%
Social Sciences 3 5%
Nursing and Health Professions 2 3%
Other 5 8%
Unknown 22 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 August 2018.
All research outputs
#2,411,015
of 23,094,276 outputs
Outputs from Frontiers in Human Neuroscience
#1,200
of 7,214 outputs
Outputs of similar age
#51,641
of 329,800 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#22
of 119 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,214 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,800 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 119 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.