↓ Skip to main content

Functional connectivity-based parcellation and connectome of cortical midline structures in the mouse: a perfusion autoradiography study

Overview of attention for article published in Frontiers in Neuroinformatics, June 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Functional connectivity-based parcellation and connectome of cortical midline structures in the mouse: a perfusion autoradiography study
Published in
Frontiers in Neuroinformatics, June 2014
DOI 10.3389/fninf.2014.00061
Pubmed ID
Authors

Daniel P. Holschneider, Zhuo Wang, Raina D. Pang

Abstract

Rodent cortical midline structures (CMS) are involved in emotional, cognitive and attentional processes. Tract tracing has revealed complex patterns of structural connectivity demonstrating connectivity-based integration and segregation for the prelimbic, cingulate area 1, retrosplenial dysgranular cortices dorsally, and infralimbic, cingulate area 2, and retrosplenial granular cortices ventrally. Understanding of CMS functional connectivity (FC) remains more limited. Here we present the first subregion-level FC analysis of the mouse CMS, and assess whether fear results in state-dependent FC changes analogous to what has been reported in humans. Brain mapping using [(14)C]-iodoantipyrine was performed in mice during auditory-cued fear conditioned recall and in controls. Regional cerebral blood flow (CBF) was analyzed in 3-D images reconstructed from brain autoradiographs. Regions-of-interest were selected along the CMS anterior-posterior and dorsal-ventral axes. In controls, pairwise correlation and graph theoretical analyses showed strong FC within each CMS structure, strong FC along the dorsal-ventral axis, with segregation of anterior from posterior structures. Seed correlation showed FC of anterior regions to limbic/paralimbic areas, and FC of posterior regions to sensory areas-findings consistent with functional segregation noted in humans. Fear recall increased FC between the cingulate and retrosplenial cortices, but decreased FC between dorsal and ventral structures. In agreement with reports in humans, fear recall broadened FC of anterior structures to the amygdala and to somatosensory areas, suggesting integration and processing of both limbic and sensory information. Organizational principles learned from animal models at the mesoscopic level (brain regions and pathways) will not only critically inform future work at the microscopic (single neurons and synapses) level, but also have translational value to advance our understanding of human brain architecture.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 25%
Student > Ph. D. Student 7 22%
Student > Master 5 16%
Student > Bachelor 4 13%
Professor > Associate Professor 3 9%
Other 2 6%
Unknown 3 9%
Readers by discipline Count As %
Medicine and Dentistry 9 28%
Agricultural and Biological Sciences 7 22%
Neuroscience 7 22%
Computer Science 3 9%
Psychology 3 9%
Other 1 3%
Unknown 2 6%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 June 2014.
All research outputs
#14,196,917
of 22,757,090 outputs
Outputs from Frontiers in Neuroinformatics
#482
of 743 outputs
Outputs of similar age
#119,962
of 228,651 outputs
Outputs of similar age from Frontiers in Neuroinformatics
#15
of 20 outputs
Altmetric has tracked 22,757,090 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 743 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.3. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 228,651 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.