↓ Skip to main content

A Monte Carlo Evaluation of Weighted Community Detection Algorithms

Overview of attention for article published in Frontiers in Neuroinformatics, November 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

news
2 news outlets
twitter
1 X user

Citations

dimensions_citation
76 Dimensions

Readers on

mendeley
81 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Monte Carlo Evaluation of Weighted Community Detection Algorithms
Published in
Frontiers in Neuroinformatics, November 2016
DOI 10.3389/fninf.2016.00045
Pubmed ID
Authors

Kathleen M. Gates, Teague Henry, Doug Steinley, Damien A. Fair

Abstract

The past decade has been marked with a proliferation of community detection algorithms that aim to organize nodes (e.g., individuals, brain regions, variables) into modular structures that indicate subgroups, clusters, or communities. Motivated by the emergence of big data across many fields of inquiry, these methodological developments have primarily focused on the detection of communities of nodes from matrices that are very large. However, it remains unknown if the algorithms can reliably detect communities in smaller graph sizes (i.e., 1000 nodes and fewer) which are commonly used in brain research. More importantly, these algorithms have predominantly been tested only on binary or sparse count matrices and it remains unclear the degree to which the algorithms can recover community structure for different types of matrices, such as the often used cross-correlation matrices representing functional connectivity across predefined brain regions. Of the publicly available approaches for weighted graphs that can detect communities in graph sizes of at least 1000, prior research has demonstrated that Newman's spectral approach (i.e., Leading Eigenvalue), Walktrap, Fast Modularity, the Louvain method (i.e., multilevel community method), Label Propagation, and Infomap all recover communities exceptionally well in certain circumstances. The purpose of the present Monte Carlo simulation study is to test these methods across a large number of conditions, including varied graph sizes and types of matrix (sparse count, correlation, and reflected Euclidean distance), to identify which algorithm is optimal for specific types of data matrices. The results indicate that when the data are in the form of sparse count networks (such as those seen in diffusion tensor imaging), Label Propagation and Walktrap surfaced as the most reliable methods for community detection. For dense, weighted networks such as correlation matrices capturing functional connectivity, Walktrap consistently outperformed the other approaches for recovering communities.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 81 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 80 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 25%
Researcher 13 16%
Student > Master 7 9%
Student > Doctoral Student 5 6%
Student > Bachelor 4 5%
Other 16 20%
Unknown 16 20%
Readers by discipline Count As %
Psychology 20 25%
Neuroscience 9 11%
Agricultural and Biological Sciences 9 11%
Medicine and Dentistry 5 6%
Computer Science 5 6%
Other 13 16%
Unknown 20 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 19. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 June 2021.
All research outputs
#1,687,816
of 22,903,988 outputs
Outputs from Frontiers in Neuroinformatics
#52
of 751 outputs
Outputs of similar age
#32,461
of 312,765 outputs
Outputs of similar age from Frontiers in Neuroinformatics
#2
of 13 outputs
Altmetric has tracked 22,903,988 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 751 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.3. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,765 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.