↓ Skip to main content

Water as an Independent Taste Modality

Overview of attention for article published in Frontiers in Neuroscience, January 2010
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (94th percentile)
  • High Attention Score compared to outputs of the same age and source (89th percentile)

Mentioned by

blogs
2 blogs
twitter
2 X users
video
1 YouTube creator

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Water as an Independent Taste Modality
Published in
Frontiers in Neuroscience, January 2010
DOI 10.3389/fnins.2010.00175
Pubmed ID
Authors

Andrew M. Rosen, Andre T. Roussin, Patricia M. Di Lorenzo

Abstract

To qualify as a "basic" taste quality or modality, defined as a group of chemicals that taste alike, three empirical benchmarks have commonly been used. The first is that a candidate group of tastants must have a dedicated transduction mechanism in the peripheral nervous system. The second is that the tastants evoke physiological responses in dedicated afferent taste nerves innervating the oropharyngeal cavity. Last, the taste stimuli evoke activity in central gustatory neurons, some of which may respond only to that group of tastants. Here we argue that water may also be an independent taste modality. This argument is based on the identification of a water dedicated transduction mechanism in the peripheral nervous system, water responsive fibers of the peripheral taste nerves and the observation of water responsive neurons in all gustatory regions within the central nervous system. We have described electrophysiological responses from single neurons in nucleus of the solitary tract (NTS) and parabrachial nucleus of the pons, respectively the first two central relay nuclei in the rodent brainstem, to water presented as a taste stimulus in anesthetized rats. Responses to water were in some cases as robust as responses to other taste qualities and sometimes occurred in the absence of responses to other tastants. Both excitatory and inhibitory responses were observed. Also, the temporal features of the water response resembled those of other taste responses. We argue that water may constitute an independent taste modality that is processed by dedicated neural channels at all levels of the gustatory neuraxis. Water-dedicated neurons in the brainstem may constitute key elements in the regulatory system for fluid in the body, i.e., thirst, and as part of the swallowing reflex circuitry.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Mexico 1 2%
United States 1 2%
Brazil 1 2%
Unknown 45 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 25%
Professor 7 15%
Researcher 6 13%
Professor > Associate Professor 4 8%
Student > Master 4 8%
Other 9 19%
Unknown 6 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 46%
Neuroscience 4 8%
Medicine and Dentistry 4 8%
Psychology 4 8%
Nursing and Health Professions 1 2%
Other 6 13%
Unknown 7 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 19. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 April 2021.
All research outputs
#1,968,602
of 25,373,627 outputs
Outputs from Frontiers in Neuroscience
#1,082
of 11,538 outputs
Outputs of similar age
#8,788
of 172,626 outputs
Outputs of similar age from Frontiers in Neuroscience
#4
of 37 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one has done particularly well, scoring higher than 90% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 172,626 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 89% of its contemporaries.