↓ Skip to main content

Activity of Protease-Activated Receptors in Primary Cultured Human Myenteric Neurons

Overview of attention for article published in Frontiers in Neuroscience, January 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Activity of Protease-Activated Receptors in Primary Cultured Human Myenteric Neurons
Published in
Frontiers in Neuroscience, January 2012
DOI 10.3389/fnins.2012.00133
Pubmed ID
Authors

Eva M. Kugler, Gemma Mazzuoli, Ihsan E. Demir, Güralp O. Ceyhan, Florian Zeller, Michael Schemann

Abstract

Activity of the four known protease-activated receptors (PARs) has been well studied in rodent enteric nervous system and results in animal models established an important role for neuronal PAR2. We recently demonstrated that, unlike in rodents, PAR1 is the dominant neuronal protease receptor in the human submucous plexus. With this study we investigated whether this also applies to the human myenteric plexus. We used voltage sensitive dye recordings to detect action potential discharge in primary cultures of human myenteric neurons in response to PAR activating peptides (APs). Application of the PAR1-AP (TFLLR) or PAR4-AP (GYPGQV) evoked spike discharge in 79 or 23% of myenteric neurons, respectively. The PAR1-AP response was mimicked by the endogenous PAR1 activator thrombin and blocked by the PAR1 antagonists SCH79797. Human myenteric neurons did not respond to PAR2-AP. This was not due to culture conditions because all three PAR-APs evoked action potentials in cultured guinea pig myenteric neurons. Consecutive application of PAR-APs revealed coexpression (relative to the population responding to PAR-APs) of PAR1/PAR2 in 51%, PAR1/PAR4 in 43%, and of PAR2/PAR4 in 29% of guinea pig myenteric neurons. Our study provided further evidence for the prominent role of neuronal PAR1 in the human enteric nervous system.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Czechia 1 5%
Unknown 21 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 23%
Researcher 5 23%
Student > Doctoral Student 3 14%
Professor 1 5%
Student > Master 1 5%
Other 1 5%
Unknown 6 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 23%
Medicine and Dentistry 4 18%
Pharmacology, Toxicology and Pharmaceutical Science 2 9%
Neuroscience 2 9%
Agricultural and Biological Sciences 2 9%
Other 1 5%
Unknown 6 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2012.
All research outputs
#22,759,452
of 25,374,647 outputs
Outputs from Frontiers in Neuroscience
#10,137
of 11,542 outputs
Outputs of similar age
#228,487
of 250,100 outputs
Outputs of similar age from Frontiers in Neuroscience
#140
of 154 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 250,100 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 154 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.