↓ Skip to main content

Distinct effects of IPSU and suvorexant on mouse sleep architecture

Overview of attention for article published in Frontiers in Neuroscience, January 2013
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Distinct effects of IPSU and suvorexant on mouse sleep architecture
Published in
Frontiers in Neuroscience, January 2013
DOI 10.3389/fnins.2013.00235
Pubmed ID
Authors

Daniel Hoyer, Thomas Dürst, Markus Fendt, Laura H. Jacobson, Claudia Betschart, Samuel Hintermann, Dirk Behnke, Simona Cotesta, Grit Laue, Silvio Ofner, Eric Legangneux, Christine E. Gee

Abstract

Dual orexin receptor (OXR) antagonists (DORAs) such as almorexant, SB-649868, suvorexant (MK-4305), and filorexant (MK-6096), have shown promise for the treatment of insomnias and sleep disorders. Whether antagonism of both OX1R and OX2R is necessary for sleep induction has been a matter of some debate. Experiments using knockout mice suggest that it may be sufficient to antagonize only OX2R. The recent identification of an orally bioavailable, brain penetrant OX2R preferring antagonist 2-((1H-Indol-3-yl)methyl)-9-(4-methoxypyrimidin-2-yl)-2,9-diazaspiro[5.5]undecan-1-one (IPSU) has allowed us to test whether selective antagonism of OX2R may also be a viable strategy for induction of sleep. We previously demonstrated that IPSU and suvorexant increase sleep when dosed during the mouse active phase (lights off); IPSU inducing sleep primarily by increasing NREM sleep, suvorexant primarily by increasing REM sleep. Here, our goal was to determine whether suvorexant and IPSU affect sleep architecture independently of overall sleep induction. We therefore tested suvorexant (25 mg/kg) and IPSU (50 mg/kg) in mice during the inactive phase (lights on) when sleep is naturally more prevalent and when orexin levels are normally low. Whereas IPSU was devoid of effects on the time spent in NREM or REM, suvorexant substantially disturbed the sleep architecture by selectively increasing REM during the first 4 h after dosing. At the doses tested, suvorexant significantly decreased wake only during the first hour and IPSU did not affect wake time. These data suggest that OX2R preferring antagonists may have a reduced tendency for perturbing NREM/REM architecture in comparison with DORAs. Whether this effect will prove to be a general feature of OX2R antagonists vs. DORAs remains to be seen.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 3%
Germany 1 3%
Unknown 34 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 25%
Student > Bachelor 5 14%
Student > Master 3 8%
Student > Ph. D. Student 3 8%
Lecturer > Senior Lecturer 2 6%
Other 4 11%
Unknown 10 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 19%
Medicine and Dentistry 7 19%
Neuroscience 5 14%
Biochemistry, Genetics and Molecular Biology 1 3%
Social Sciences 1 3%
Other 3 8%
Unknown 12 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 December 2013.
All research outputs
#20,655,488
of 25,373,627 outputs
Outputs from Frontiers in Neuroscience
#9,456
of 11,538 outputs
Outputs of similar age
#228,815
of 288,986 outputs
Outputs of similar age from Frontiers in Neuroscience
#187
of 246 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 288,986 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 246 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.