↓ Skip to main content

Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus

Overview of attention for article published in Frontiers in Neuroscience, January 2013
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus
Published in
Frontiers in Neuroscience, January 2013
DOI 10.3389/fnins.2013.00263
Pubmed ID
Authors

Ilenia Severi, Jessica Perugini, Eleonora Mondini, Arianna Smorlesi, Andrea Frontini, Saverio Cinti, Antonio Giordano

Abstract

In the mouse hypothalamus, ciliary neurotrophic factor (CNTF) is mainly expressed by ependymal cells and tanycytes of the ependymal layer covering the third ventricle. Since exogenously administered CNTF causes reduced food intake and weight loss, we tested whether endogenous CNTF might be involved in energy balance regulation. We thus evaluated CNTF production and responsiveness in the hypothalamus of mice fed a high-fat diet (HFD), of ob/ob obese mice, and of mice fed a calorie restriction (CR) regimen. RT-PCR showed that CNTF mRNA increased significantly in HFD mice and decreased significantly in CR animals. Western blotting confirmed that CNTF expression was higher in HFD mice and reduced in CR mice, but high interindividual variability blunted the significance of these differences. By immunohistochemistry, hypothalamic tuberal and mammillary region tanycytes stained strongly for CNTF in HFD mice, whereas CR mice exhibited markedly reduced staining. RT-PCR and Western blotting disclosed that changes in CNTF expression were paralleled by changes in the expression of its specific receptor, CNTF receptor α (CNTFRα). Injection of recombinant CNTF and detection of phospho-signal transducer and activator of transcription 3 (P-STAT3) showed that CNTF responsiveness by the ependymal layer, mainly by tanycytes, was higher in HFD than CR mice. In addition, in HFD mice CNTF administration induced distinctive STAT3 signaling in a large neuron population located in the dorsomedial and ventromedial nuclei, perifornical area and mammillary body. The hypothalamic expression of CNTF and CNTFRα did not change in the hyperphagic, leptin-deficient ob/ob obese mice; accordingly, P-STAT3 immunoreactivity in CNTF-treated ob/ob mice was confined to ependymal layer and arcuate neurons. Collectively, these data suggest that hypothalamic CNTF is involved in controlling the energy balance and that CNTF signaling plays a role in HFD obese mice at specific sites.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 3%
Denmark 1 3%
Unknown 38 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 18%
Student > Ph. D. Student 7 18%
Student > Bachelor 6 15%
Professor > Associate Professor 3 8%
Student > Master 3 8%
Other 6 15%
Unknown 8 20%
Readers by discipline Count As %
Neuroscience 9 23%
Agricultural and Biological Sciences 6 15%
Medicine and Dentistry 6 15%
Biochemistry, Genetics and Molecular Biology 5 13%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 5 13%
Unknown 8 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 March 2022.
All research outputs
#3,274,638
of 25,373,627 outputs
Outputs from Frontiers in Neuroscience
#2,421
of 11,538 outputs
Outputs of similar age
#31,792
of 288,991 outputs
Outputs of similar age from Frontiers in Neuroscience
#54
of 246 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 288,991 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 246 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.