↓ Skip to main content

Control of intrinsic pacemaker frequency and velocity of colonic migrating motor complexes in mouse

Overview of attention for article published in Frontiers in Neuroscience, May 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Control of intrinsic pacemaker frequency and velocity of colonic migrating motor complexes in mouse
Published in
Frontiers in Neuroscience, May 2014
DOI 10.3389/fnins.2014.00096
Pubmed ID
Authors

Kyra J. Barnes, Elizabeth A. Beckett, Simon J. Brookes, Tiong Cheng Sia, Nick J. Spencer

Abstract

The mechanisms that control the frequency and propagation velocity of colonic migrating motor complexes (CMMCs) in mammals are poorly understood. Previous in vitro studies on whole mouse colon have shown that CMMCs occur frequently (~every 1-3 min) when the colon is devoid of all fecal content. Consequently, these studies have concluded that the generation of CMMCs and the frequency which they occur does not require the presence of fecal content in the lumen. However, in these studies, stimuli have always been unavoidably applied to these empty colonic preparations, facilitating recordings of CMMC activity. We tested whether CMMCs still occur in empty whole colonic preparations, but when conventional recording methods are not used. To test this, we used video imaging, but did not utilize standard recording methods. In whole isolated colons containing multiple endogenous fecal pellets, CMMCs occurred frequently (1.9 ± 0.1/min) and propagated at 2.2 ± 0.2 mm/s. Surprisingly, when these preparations had expelled all content, CMMCs were absent in 11/24 preparations. In the remaining preparations, CMMCs occurred rarely (0.18 ± 0.02/min) and at reduced velocities (0.71 ± 0.1 mm/s), with reduced extent of propagation. When conventional recording techniques were then applied to these empty preparations, CMMC frequency significantly increased, as did the extent of propagation and velocity. We show that in contrast to popular belief, CMMCs either do not occur when the colon is free of luminal contents, or, they occur at significantly lower frequencies. We believe that previous in vitro studies on empty segments of whole mouse colon have consistently demonstrated CMMCs at high frequencies because conventional recording techniques stimulate the colon. This study shows that CMMCs are normally absent, or infrequent in an empty colon, but their frequency increases substantially when fecal content is present, or, if in vitro techniques are used that stimulate the intestine.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 35%
Professor > Associate Professor 2 10%
Other 1 5%
Student > Master 1 5%
Student > Doctoral Student 1 5%
Other 2 10%
Unknown 6 30%
Readers by discipline Count As %
Medicine and Dentistry 4 20%
Neuroscience 3 15%
Biochemistry, Genetics and Molecular Biology 1 5%
Physics and Astronomy 1 5%
Agricultural and Biological Sciences 1 5%
Other 2 10%
Unknown 8 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 May 2014.
All research outputs
#22,759,802
of 25,374,917 outputs
Outputs from Frontiers in Neuroscience
#10,137
of 11,541 outputs
Outputs of similar age
#209,554
of 242,100 outputs
Outputs of similar age from Frontiers in Neuroscience
#84
of 104 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,541 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 242,100 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 104 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.