↓ Skip to main content

Insult-induced adaptive plasticity of the auditory system

Overview of attention for article published in Frontiers in Neuroscience, May 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
119 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Insult-induced adaptive plasticity of the auditory system
Published in
Frontiers in Neuroscience, May 2014
DOI 10.3389/fnins.2014.00110
Pubmed ID
Authors

Joshua R. Gold, Victoria M. Bajo

Abstract

The brain displays a remarkable capacity for both widespread and region-specific modifications in response to environmental challenges, with adaptive processes bringing about the reweighing of connections in neural networks putatively required for optimizing performance and behavior. As an avenue for investigation, studies centered around changes in the mammalian auditory system, extending from the brainstem to the cortex, have revealed a plethora of mechanisms that operate in the context of sensory disruption after insult, be it lesion-, noise trauma, drug-, or age-related. Of particular interest in recent work are those aspects of auditory processing which, after sensory disruption, change at multiple-if not all-levels of the auditory hierarchy. These include changes in excitatory, inhibitory and neuromodulatory networks, consistent with theories of homeostatic plasticity; functional alterations in gene expression and in protein levels; as well as broader network processing effects with cognitive and behavioral implications. Nevertheless, there abounds substantial debate regarding which of these processes may only be sequelae of the original insult, and which may, in fact, be maladaptively compelling further degradation of the organism's competence to cope with its disrupted sensory context. In this review, we aim to examine how the mammalian auditory system responds in the wake of particular insults, and to disambiguate how the changes that develop might underlie a correlated class of phantom disorders, including tinnitus and hyperacusis, which putatively are brought about through maladaptive neuroplastic disruptions to auditory networks governing the spatial and temporal processing of acoustic sensory information.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 119 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 4 3%
United Kingdom 1 <1%
Germany 1 <1%
Canada 1 <1%
Unknown 112 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 21 18%
Student > Ph. D. Student 19 16%
Student > Bachelor 11 9%
Student > Master 10 8%
Other 10 8%
Other 27 23%
Unknown 21 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 20%
Medicine and Dentistry 21 18%
Neuroscience 18 15%
Engineering 7 6%
Nursing and Health Professions 6 5%
Other 19 16%
Unknown 24 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 June 2014.
All research outputs
#16,048,009
of 25,374,917 outputs
Outputs from Frontiers in Neuroscience
#7,064
of 11,542 outputs
Outputs of similar age
#130,464
of 240,006 outputs
Outputs of similar age from Frontiers in Neuroscience
#65
of 115 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 240,006 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 115 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.