↓ Skip to main content

On the temporal dynamics of spatial stimulus-response transfer between spatial incompatibility and Simon tasks

Overview of attention for article published in Frontiers in Neuroscience, August 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
On the temporal dynamics of spatial stimulus-response transfer between spatial incompatibility and Simon tasks
Published in
Frontiers in Neuroscience, August 2014
DOI 10.3389/fnins.2014.00243
Pubmed ID
Authors

Jason Ivanoff, Ryan Blagdon, Stefanie Feener, Melanie McNeil, Paul H. Muir

Abstract

The Simon effect refers to the performance (response time and accuracy) advantage for responses that spatially correspond to the task-irrelevant location of a stimulus. It has been attributed to a natural tendency to respond toward the source of stimulation. When location is task-relevant, however, and responses are intentionally directed away (incompatible) or toward (compatible) the source of the stimulation, there is also an advantage for spatially compatible responses over spatially incompatible responses. Interestingly, a number of studies have demonstrated a reversed, or reduced, Simon effect following practice with a spatial incompatibility task. One interpretation of this finding is that practicing a spatial incompatibility task disables the natural tendency to respond toward stimuli. Here, the temporal dynamics of this stimulus-response (S-R) transfer were explored with speed-accuracy trade-offs (SATs). All experiments used the mixed-task paradigm in which Simon and spatial compatibility/incompatibility tasks were interleaved across blocks of trials. In general, bidirectional S-R transfer was observed: while the spatial incompatibility task had an influence on the Simon effect, the task-relevant S-R mapping of the Simon task also had a small impact on congruency effects within the spatial compatibility and incompatibility tasks. These effects were generally greater when the task contexts were similar. Moreover, the SAT analysis of performance in the Simon task demonstrated that the tendency to respond to the location of the stimulus was not eliminated because of the spatial incompatibility task. Rather, S-R transfer from the spatial incompatibility task appeared to partially mask the natural tendency to respond to the source of stimulation with a conflicting inclination to respond away from it. These findings support the use of SAT methodology to quantitatively describe rapid response tendencies.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 21%
Student > Ph. D. Student 3 13%
Student > Master 3 13%
Other 2 8%
Researcher 2 8%
Other 5 21%
Unknown 4 17%
Readers by discipline Count As %
Psychology 7 29%
Neuroscience 3 13%
Nursing and Health Professions 3 13%
Business, Management and Accounting 1 4%
Agricultural and Biological Sciences 1 4%
Other 5 21%
Unknown 4 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 August 2014.
All research outputs
#22,101,728
of 24,657,405 outputs
Outputs from Frontiers in Neuroscience
#9,852
of 11,133 outputs
Outputs of similar age
#205,462
of 240,636 outputs
Outputs of similar age from Frontiers in Neuroscience
#114
of 119 outputs
Altmetric has tracked 24,657,405 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,133 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 240,636 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 119 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.