↓ Skip to main content

De-noising with a SOCK can improve the performance of event-related ICA

Overview of attention for article published in Frontiers in Neuroscience, September 2014
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
De-noising with a SOCK can improve the performance of event-related ICA
Published in
Frontiers in Neuroscience, September 2014
DOI 10.3389/fnins.2014.00285
Pubmed ID
Authors

Kaushik Bhaganagarapu, Graeme D. Jackson, David F. Abbott

Abstract

Event-related ICA (eICA) is a partially data-driven analysis method for event-related fMRI that is particularly suited to analysis of simultaneous EEG-fMRI of patients with epilepsy. EEG-fMRI studies in epileptic patients are typically analyzed using the general linear model (GLM), often with assumption that the onset and offset of neuronal activity match EEG event onset and offset, the neuronal activation is sustained at a constant level throughout the epileptiform event and that associated fMRI signal changes follow the canonical HRF. The eICA method allows for less constrained analyses capable of detecting early, non-canonical responses. A key step of eICA is the initial deconvolution which can be confounded by various sources of structured noise present in the fMRI signal. To help overcome this, we have extend the eICA procedure by utilizing a fully standalone and automated fMRI de-noising procedure to process the fMRI data from an EEG-fMRI acquisition prior to running eICA. Specifically we first apply ICA to the entire fMRI time-series and use a classifier to remove noise-related components. The automated objective de-noiser, "Spatially Organized Component Klassificator" (SOCK) is used; it has previously been shown to distinguish a substantial fraction of noise from true activation, without rejecting the latter, in resting-state fMRI. A second ICA is then performed, this time on the event-related response estimates derived from the denoised data (according to the usual eICA procedure). We hypothesize that SOCK + eICA has the potential to be more sensitive than eICA alone. We test the effectiveness of SOCK by comparing activation obtained in an eICA analysis of EEG-fMRI data with and without the use of SOCK for 14 patients with rolandic epilepsy who exhibited stereotypical IEDs arising from a focus in the rolandic fissure.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 4%
Unknown 27 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 36%
Student > Ph. D. Student 5 18%
Student > Master 3 11%
Lecturer 2 7%
Professor > Associate Professor 2 7%
Other 4 14%
Unknown 2 7%
Readers by discipline Count As %
Neuroscience 8 29%
Engineering 6 21%
Medicine and Dentistry 4 14%
Psychology 3 11%
Nursing and Health Professions 2 7%
Other 2 7%
Unknown 3 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 October 2014.
All research outputs
#19,962,154
of 25,394,764 outputs
Outputs from Frontiers in Neuroscience
#8,675
of 11,544 outputs
Outputs of similar age
#179,820
of 261,057 outputs
Outputs of similar age from Frontiers in Neuroscience
#92
of 112 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,544 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 261,057 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 112 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.