↓ Skip to main content

Electrophysiological evidence for change detection in speech sound patterns by anesthetized rats

Overview of attention for article published in Frontiers in Neuroscience, November 2014
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Electrophysiological evidence for change detection in speech sound patterns by anesthetized rats
Published in
Frontiers in Neuroscience, November 2014
DOI 10.3389/fnins.2014.00374
Pubmed ID
Authors

Piia Astikainen, Tanel Mällo, Timo Ruusuvirta, Risto Näätänen

Abstract

Human infants are able to detect changes in grammatical rules in a speech sound stream. Here, we tested whether rats have a comparable ability by using an electrophysiological measure that has been shown to reflect higher order auditory cognition even before it becomes manifested in behavioral level. Urethane-anesthetized rats were presented with a stream of sequences consisting of three pseudowords carried out at a fast pace. Frequently presented "standard" sequences had 16 variants which all had the same structure. They were occasionally replaced by acoustically novel "deviant" sequences of two different types: structurally consistent and inconsistent sequences. Two stimulus conditions were presented for separate animal groups. In one stimulus condition, the standard and the pattern-obeying deviant sequences had an AAB structure, while the pattern-violating deviant sequences had an ABB structure. In the other stimulus condition, these assignments were reversed. During the stimulus presentation, local-field potentials were recorded from the dura, above the auditory cortex. Two temporally separate differential brain responses to the deviant sequences reflected the detection of the deviant speech sound sequences. The first response was elicited by both types of deviant sequences and reflected most probably their acoustical novelty. The second response was elicited specifically by the structurally inconsistent deviant sequences (pattern-violating deviant sequences), suggesting that rats were able to detect changes in the pattern of three-syllabic speech sound sequence (i.e., location of the reduplication of an element in the sequence). Since all the deviant sound sequences were constructed of novel items, our findings indicate that, similarly to the human brain, the rat brain has the ability to automatically generalize extracted structural information to new items.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 29 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 30%
Student > Bachelor 5 17%
Professor > Associate Professor 3 10%
Student > Master 3 10%
Student > Doctoral Student 2 7%
Other 4 13%
Unknown 4 13%
Readers by discipline Count As %
Psychology 9 30%
Agricultural and Biological Sciences 5 17%
Neuroscience 4 13%
Computer Science 2 7%
Arts and Humanities 2 7%
Other 2 7%
Unknown 6 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 November 2014.
All research outputs
#7,301,979
of 25,373,627 outputs
Outputs from Frontiers in Neuroscience
#4,740
of 11,538 outputs
Outputs of similar age
#92,877
of 367,985 outputs
Outputs of similar age from Frontiers in Neuroscience
#48
of 116 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 367,985 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 116 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.