↓ Skip to main content

Transfer of conflict and cooperation from experienced games to new games: a connectionist model of learning

Overview of attention for article published in Frontiers in Neuroscience, March 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transfer of conflict and cooperation from experienced games to new games: a connectionist model of learning
Published in
Frontiers in Neuroscience, March 2015
DOI 10.3389/fnins.2015.00102
Pubmed ID
Authors

Leonidas Spiliopoulos

Abstract

The question of whether, and if so how, learning can be transfered from previously experienced games to novel games has recently attracted the attention of the experimental game theory literature. Existing research presumes that learning operates over actions, beliefs or decision rules. This study instead uses a connectionist approach that learns a direct mapping from game payoffs to a probability distribution over own actions. Learning is operationalized as a backpropagation rule that adjusts the weights of feedforward neural networks in the direction of increasing the probability of an agent playing a myopic best response to the last game played. One advantage of this approach is that it expands the scope of the model to any possible n × n normal-form game allowing for a comprehensive model of transfer of learning. Agents are exposed to games drawn from one of seven classes of games with significantly different strategic characteristics and then forced to play games from previously unseen classes. I find significant transfer of learning, i.e., behavior that is path-dependent, or conditional on the previously seen games. Cooperation is more pronounced in new games when agents are previously exposed to games where the incentive to cooperate is stronger than the incentive to compete, i.e., when individual incentives are aligned. Prior exposure to Prisoner's dilemma, zero-sum and discoordination games led to a significant decrease in realized payoffs for all the game classes under investigation. A distinction is made between superficial and deep transfer of learning both-the former is driven by superficial payoff similarities between games, the latter by differences in the incentive structures or strategic implications of the games. I examine whether agents learn to play the Nash equilibria of games, how they select amongst multiple equilibria, and whether they transfer Nash equilibrium behavior to unseen games. Sufficient exposure to a strategically heterogeneous set of games is found to be a necessary condition for deep learning (and transfer) across game classes. Paradoxically, superficial transfer of learning is shown to lead to better outcomes than deep transfer for a wide range of game classes. The simulation results corroborate important experimental findings with human subjects, and make several novel predictions that can be tested experimentally.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Austria 1 2%
Unknown 58 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 17%
Student > Master 4 7%
Professor 2 3%
Student > Doctoral Student 2 3%
Student > Postgraduate 2 3%
Other 6 10%
Unknown 33 56%
Readers by discipline Count As %
Computer Science 7 12%
Psychology 3 5%
Nursing and Health Professions 2 3%
Economics, Econometrics and Finance 2 3%
Engineering 2 3%
Other 9 15%
Unknown 34 58%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 April 2015.
All research outputs
#17,285,036
of 25,371,288 outputs
Outputs from Frontiers in Neuroscience
#8,065
of 11,538 outputs
Outputs of similar age
#170,212
of 279,249 outputs
Outputs of similar age from Frontiers in Neuroscience
#99
of 130 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,249 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 130 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.