↓ Skip to main content

A framework to analyze cerebral mean diffusivity using surface guided diffusion mapping in diffusion tensor imaging

Overview of attention for article published in Frontiers in Neuroscience, July 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A framework to analyze cerebral mean diffusivity using surface guided diffusion mapping in diffusion tensor imaging
Published in
Frontiers in Neuroscience, July 2015
DOI 10.3389/fnins.2015.00236
Pubmed ID
Authors

Oh-Hun Kwon, Hyunjin Park, Sang-Won Seo, Duk L. Na, Jong-Min Lee

Abstract

The mean diffusivity (MD) value has been used to describe microstructural properties in Diffusion Tensor Imaging (DTI) in cortical gray matter (GM). Recently, researchers have applied a cortical surface generated from the T1-weighted volume. When the DTI data are analyzed using the cortical surface, it is important to assign an accurate MD value from the volume space to the vertex of the cortical surface, considering the anatomical correspondence between the DTI and the T1-weighted image. Previous studies usually sampled the MD value using the nearest-neighbor (NN) method or Linear method, even though there are geometric distortions in diffusion-weighted volumes. Here we introduce a Surface Guided Diffusion Mapping (SGDM) method to compensate for such geometric distortions. We compared our SGDM method with results using NN and Linear methods by investigating differences in the sampled MD value. We also projected the tissue classification results of non-diffusion-weighted volumes to the cortical midsurface. The CSF probability values provided by the SGDM method were lower than those produced by the NN and Linear methods. The MD values provided by the NN and Linear methods were significantly greater than those of the SGDM method in regions suffering from geometric distortion. These results indicate that the NN and Linear methods assigned the MD value in the CSF region to the cortical midsurface (GM region). Our results suggest that the SGDM method is an effective way to correct such mapping errors.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Italy 1 3%
Canada 1 3%
Brazil 1 3%
Unknown 31 91%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 24%
Student > Master 5 15%
Student > Doctoral Student 4 12%
Researcher 4 12%
Student > Bachelor 3 9%
Other 6 18%
Unknown 4 12%
Readers by discipline Count As %
Medicine and Dentistry 8 24%
Neuroscience 8 24%
Psychology 3 9%
Engineering 2 6%
Biochemistry, Genetics and Molecular Biology 1 3%
Other 4 12%
Unknown 8 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 July 2015.
All research outputs
#22,758,309
of 25,373,627 outputs
Outputs from Frontiers in Neuroscience
#10,135
of 11,538 outputs
Outputs of similar age
#235,960
of 276,415 outputs
Outputs of similar age from Frontiers in Neuroscience
#90
of 103 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 276,415 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 103 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.