↓ Skip to main content

Brain oscillatory activity during motor preparation: effect of directional uncertainty on beta, but not alpha, frequency band

Overview of attention for article published in Frontiers in Neuroscience, July 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
94 Dimensions

Readers on

mendeley
132 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Brain oscillatory activity during motor preparation: effect of directional uncertainty on beta, but not alpha, frequency band
Published in
Frontiers in Neuroscience, July 2015
DOI 10.3389/fnins.2015.00246
Pubmed ID
Authors

Charidimos Tzagarakis, Sarah West, Giuseppe Pellizzer

Abstract

In time-constraint activities, such as sports, it is advantageous to be prepared to act even before knowing precisely what action will be needed. Here, we studied the relation between neural oscillations during motor preparation and amount of uncertainty about the direction of the upcoming target. Ten right-handed volunteers participated in a cued center-out task. A brief visual cue identified the region of space in which the target would appear. Three cue sizes were used to vary the amount of information about the direction of the upcoming target. The target appeared at a random location within the region indicated by the cue, and the participants moved a joystick-controlled cursor toward it. Time-frequency analyses showed phasic increases of power in low (delta/theta: <7 Hz) and high (gamma: >30 Hz) frequency-bands in relation to the onset of visual stimuli and of the motor response. More importantly in regard to motor preparation, there was a tonic reduction of power in the alpha (8-12 Hz) and beta (14-30 Hz) bands during the period between cue presentation and target onset. During motor preparation, the main source of change of power of the alpha band was localized over the contralateral sensorimotor region and both parietal cortices, whereas for the beta-band the main source was the contralateral sensorimotor region. During cue presentation, the reduction of power of the alpha-band in the occipital lobe showed a brief differentiation of condition: the wider the visual cue, the more the power of the alpha-band decreased. However, during motor preparation, only the power of the beta-band was dependent on directional uncertainty: the less the directional uncertainty, the more the power of the beta-band decreased. In conclusion, the results indicate that the power in the alpha-band is associated briefly with cue size, but is otherwise an undifferentiated indication of neural activation, whereas the power of the beta-band reflects the level of motor preparation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 132 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Germany 1 <1%
Unknown 130 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 35 27%
Researcher 22 17%
Student > Master 13 10%
Student > Doctoral Student 8 6%
Student > Bachelor 8 6%
Other 21 16%
Unknown 25 19%
Readers by discipline Count As %
Neuroscience 29 22%
Psychology 26 20%
Agricultural and Biological Sciences 8 6%
Engineering 8 6%
Medicine and Dentistry 7 5%
Other 14 11%
Unknown 40 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 August 2015.
All research outputs
#14,536,679
of 25,374,647 outputs
Outputs from Frontiers in Neuroscience
#5,780
of 11,542 outputs
Outputs of similar age
#125,007
of 275,683 outputs
Outputs of similar age from Frontiers in Neuroscience
#56
of 107 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,542 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 275,683 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 107 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.