↓ Skip to main content

Dopamine D1 receptor activation regulates the expression of the estrogen synthesis gene aromatase B in radial glial cells

Overview of attention for article published in Frontiers in Neuroscience, September 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dopamine D1 receptor activation regulates the expression of the estrogen synthesis gene aromatase B in radial glial cells
Published in
Frontiers in Neuroscience, September 2015
DOI 10.3389/fnins.2015.00310
Pubmed ID
Authors

Lei Xing, Heather McDonald, Dillon F. Da Fonte, Juan M. Gutierrez-Villagomez, Vance L. Trudeau

Abstract

Radial glial cells (RGCs) are abundant stem-like non-neuronal progenitors that are important for adult neurogenesis and brain repair, yet little is known about their regulation by neurotransmitters. Here we provide evidence for neuronal-glial interactions via a novel role for dopamine to stimulate RGC function. Goldfish were chosen as the model organism due to the abundance of RGCs and regenerative abilities of the adult central nervous system. A close anatomical relationship was observed between tyrosine hydroxylase-positive catecholaminergic cell bodies and axons and dopamine-D1 receptor expressing RGCs along the ventricular surface of telencephalon, a site of active neurogenesis. A primary cell culture model was established and immunofluorescence analysis indicates that in vitro RGCs from female goldfish retain their major characteristics in vivo, including expression of glial fibrillary acidic protein and brain lipid binding protein. The estrogen synthesis enzyme aromatase B is exclusively found in RGCs, but this is lost as cells differentiate to neurons and other glial types in adult teleost brain. Pharmacological experiments using the cultured RGCs established that specific activation of dopamine D1 receptors up-regulates aromatase B mRNA through a cyclic adenosine monophosphate-dependent molecular mechanism. These data indicate that dopamine enhances the steroidogenic function of this neuronal progenitor cell.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 14%
Student > Master 2 10%
Other 2 10%
Researcher 2 10%
Professor 2 10%
Other 5 24%
Unknown 5 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 29%
Biochemistry, Genetics and Molecular Biology 4 19%
Neuroscience 3 14%
Unspecified 1 5%
Unknown 7 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 September 2015.
All research outputs
#22,756,649
of 25,371,288 outputs
Outputs from Frontiers in Neuroscience
#10,134
of 11,538 outputs
Outputs of similar age
#237,724
of 277,045 outputs
Outputs of similar age from Frontiers in Neuroscience
#110
of 127 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,538 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 277,045 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 127 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.