↓ Skip to main content

From UBE3A to Angelman syndrome: a substrate perspective

Overview of attention for article published in Frontiers in Neuroscience, September 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
154 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
From UBE3A to Angelman syndrome: a substrate perspective
Published in
Frontiers in Neuroscience, September 2015
DOI 10.3389/fnins.2015.00322
Pubmed ID
Authors

Gabrielle L. Sell, Seth S. Margolis

Abstract

Angelman syndrome (AS) is a debilitating neurodevelopmental disorder that is characterized by motor dysfunction, intellectual disability, speech impairment, seizures and common features of autism spectrum disorders (ASDs). Some of these AS related phenotypes can be seen in other neurodevelopmental disorders (Williams, 2011; Tan et al., 2014). AS patients commonly carry mutations that render the maternally inherited UBE3A gene non-functional. Duplication of the chromosomal region containing the UBE3A gene is associated with ASDs. Although the causative role for UBE3A gene mutations in AS is well established, a long-standing challenge in AS research has been to identify neural substrates of UBE3A, an E3 ubiquitin ligase. A prevailing hypothesis is that changes in UBE3A protein levels would alter the levels of a collection of protein substrates, giving rise to the unique phenotypic aspects of AS and possibly UBE3A associated ASDs. Interestingly, proteins altered in AS are linked to additional ASDs that are not previously associated with changes in UBE3A, indicating a possible molecular overlap underlying the broad-spectrum phenotypes of these neurogenetic disorders. This idea raises the possibility that there may exist a "one-size-fits-all" approach to the treatment of neurogenetic disorders with phenotypes overlapping AS. Furthermore, while a comprehensive list of UBE3A substrates and downstream affected pathways should be developed, this is only part of the story. The timing of when UBE3A protein functions, through either changes in UBE3A or possibly substrate expression patterns, appears to be critical for AS phenotype development. These data call for further investigation of UBE3A substrates and their timing of action relevant to AS phenotypes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 154 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 <1%
United States 1 <1%
Unknown 152 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 35 23%
Student > Ph. D. Student 25 16%
Student > Master 23 15%
Student > Bachelor 18 12%
Student > Doctoral Student 10 6%
Other 11 7%
Unknown 32 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 33 21%
Neuroscience 31 20%
Agricultural and Biological Sciences 24 16%
Medicine and Dentistry 13 8%
Pharmacology, Toxicology and Pharmaceutical Science 7 5%
Other 14 9%
Unknown 32 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 October 2015.
All research outputs
#20,657,128
of 25,374,917 outputs
Outputs from Frontiers in Neuroscience
#9,458
of 11,541 outputs
Outputs of similar age
#206,028
of 281,198 outputs
Outputs of similar age from Frontiers in Neuroscience
#119
of 142 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,541 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 281,198 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 142 others from the same source and published within six weeks on either side of this one. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.