↓ Skip to main content

Detecting the subtle shape differences in hemodynamic responses at the group level

Overview of attention for article published in Frontiers in Neuroscience, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Detecting the subtle shape differences in hemodynamic responses at the group level
Published in
Frontiers in Neuroscience, October 2015
DOI 10.3389/fnins.2015.00375
Pubmed ID
Authors

Gang Chen, Ziad S. Saad, Nancy E. Adleman, Ellen Leibenluft, Robert W. Cox

Abstract

The nature of the hemodynamic response (HDR) is still not fully understood due to the multifaceted processes involved. Aside from the overall amplitude, the response may vary across cognitive states, tasks, brain regions, and subjects with respect to characteristics such as rise and fall speed, peak duration, undershoot shape, and overall duration. Here we demonstrate that the fixed-shape (FSM) or adjusted-shape (ASM) methods may fail to detect some shape subtleties (e.g., speed of rise or recovery, or undershoot). In contrast, the estimated-shape method (ESM) through multiple basis functions can provide the opportunity to identify some subtle shape differences and achieve higher statistical power at both individual and group levels. Previously, some dimension reduction approaches focused on the peak magnitude, or made inferences based on the area under the curve (AUC) or interaction, which can lead to potential misidentifications. By adopting a generic framework of multivariate modeling (MVM), we showcase a hybrid approach that is validated by simulations and real data. With the whole HDR shape integrity maintained as input at the group level, the approach allows the investigator to substantiate these more nuanced effects through the unique HDR shape features. Unlike the few analyses that were limited to main effect, two- or three-way interactions, we extend the modeling approach to an inclusive platform that is more adaptable than the conventional GLM. With multiple effect estimates from ESM for each condition, linear mixed-effects (LME) modeling should be used at the group level when there is only one group of subjects without any other explanatory variables. Under other situations, an approximate approach through dimension reduction within the MVM framework can be adopted to achieve a practical equipoise among representation, false positive control, statistical power, and modeling flexibility. The associated program 3dMVM is publicly available as part of the AFNI suite.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 49 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 22%
Student > Ph. D. Student 8 16%
Student > Doctoral Student 7 14%
Student > Bachelor 4 8%
Student > Master 4 8%
Other 6 12%
Unknown 10 20%
Readers by discipline Count As %
Psychology 13 26%
Neuroscience 10 20%
Agricultural and Biological Sciences 6 12%
Medicine and Dentistry 3 6%
Social Sciences 2 4%
Other 5 10%
Unknown 11 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 November 2015.
All research outputs
#16,722,190
of 25,374,917 outputs
Outputs from Frontiers in Neuroscience
#7,425
of 11,541 outputs
Outputs of similar age
#167,467
of 295,174 outputs
Outputs of similar age from Frontiers in Neuroscience
#89
of 141 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,541 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 295,174 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 141 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.